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Long-range orientational order in two-dimensional
microfluidic dipoles
Itamar Shani1, Tsevi Beatus1,2, Roy H. Bar-Ziv1* and Tsvi Tlusty3*
Dynamic restructuring and ordering are prevalent in driven
many-body systems with long-range interactions, such as sed-
imenting particles1–3, dusty plasmas4, flocking animals5–7 and
microfluidic droplets8. Yet, understanding such collective dy-
namics from basic principles is challenging because these sys-
tems are not governed by global minimization principles, and
because every constituent interacts with many others. Here,
we report long-range orientational order of droplet velocities
in disordered two-dimensional microfluidic droplet ensembles.
Droplet velocities exhibit strong long-range correlation as 1/r2,
with a four-fold angular symmetry. The two-droplet correlation
can be explained by representing the entire ensemble as a
third droplet. The correlation amplitude is non-monotonous
with density owing to excluded-volume effects. Our study puts
forth a many-body problem with long-range interactions that is
solvable from first principles owing to the reduced dimension-
ality, and introduces new experimental tools to address open
problems in many-body non-equilibrium systems9,10.

Physical systems with long-range interactions pose a difficult
challenge to both theory and experiment and their understanding
is considered an open problem, which has attracted much effort
in recent years9. Long-range hydrodynamic interactions arise in
particle-laden fluids, as the motion of particles relative to the
surrounding fluid induces a slowly decaying perturbation of the
flow field. When the suspension is enclosed in an effective two-
dimensional (2D) geometry, such as in confined suspensions11,12,
electrophoresis in capillaries13, protein diffusion in membranes14,
and microfluidic droplets15,16, the hydrodynamic perturbations
take the form of long-range dipoles. Such dipolar systems, where
the exponent of the spatial decay of the interaction equals the
dimension, are known to be marginally strong and have therefore
attracted special interest9. The marginal nature arises from the
logarithmic divergence of the interaction with the system size,
which leads to intriguing phenomena such as shape dependence,
similar to that of dielectrics ormagnetic dipoles17.

Recently, the collective dynamics of microfluidic droplets
has generated a growing interest both as a model system
for non-equilibrium dynamics and owing to their practical
applications16,18–25. Here we generated a highly dynamic and dis-
ordered medium with thousands of uniform water-in-oil droplets
flowing in a quasi-2D microfluidic channel of width W = 500 µm
and height h= 10 µm. The droplets are shaped as discs of uniform
radius in the range R = 7–11 µm (Fig. 1a). They are in contact
with the horizontal floor and ceiling and deform the laminar
streamlines of the carrier oil while being dragged at a mean velocity
of ud = 100–200 µms−1 that is roughly four times slower than the
oil velocity (Fig. 1b,c). The system is driven far from equilibrium
by the imposed flow and operates at a low Reynolds number of
Re ∼ 10−4, where viscosity dominates inertial effects. Each droplet
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induces a hydrodynamic dipole leading to interactions between the
droplets16. The dipole is proportional to the velocity difference of
oil and droplet, and is aligned with the droplet velocity. Droplet
clusters constantly form and break apart erratically, and individual
droplets exhibit random, diffusive-like motion due to their interac-
tions with the other droplets20. Overall, this highly disordered sys-
tem exhibits large velocity and density fluctuations that have little to
dowith thermal energy, consistentwith a Peclet number ofPe∼107.

We tracked the trajectories of the droplets for about 100 s in a
reference framemoving at the mean droplet velocity, andmeasured
the velocity fluctuation of each droplet, δδδu(t )=u(t )−udx̂, where
u(t ) is the droplet’s velocity at time t and x̂ is the mean flow
direction downstream the channel. The droplets’mean area fraction
ρ0 was varied in the range of 0.07–0.63 between measurements
and remained roughly constant during each one. The snapshot
in Fig. 1d,e shows distinctive patterns of δδδu for ρ0 = 0.18 with
stripes of oriented droplet velocities. These structures demonstrate
collective motion with spatial velocity correlations, corresponding
to orientational ordering of the hydrodynamic dipoles that
are aligned with the velocities. We define the spatial velocity
correlation of the measured δux between two points separated by
a vector r= (r,θ):

Cx(r)≡〈δux(r′,t )δux(r′+r,t )〉r ′,t (1)

Here, δux is the x component of δδδu and averaging is performed
over the position r′ and time t , such that both r′ and r′ + r fall
within the central half of the channel to avoid boundary effects. A
similar definition applies for δuy . Despite the disordered dynamics,
the velocity correlations show remarkable long-range order and
symmetry (Fig. 2a–e). Both Cx and Cy persist over long distances
of r = 15–20R before falling below noise level. At large distances,
r = 5–20R, the correlation exhibits the following hallmarks: decay
similar to a power law of r−2 (Fig. 2c and Supplementary Fig. 1 for
all of the measured densities); anti-symmetry: Cy(r,θ)≈−Cx (r,θ)
(Fig. 2d,e); four-fold angular symmetry, ∼cos(4θ), with positive
maxima reflecting a tendency for joint motion in a particular
direction, and negative minima that indicate relative motion in
opposite directions, that is dilation, contraction or rotation.

To reveal which droplets contribute to the correlations we
computed the conditional correlation function defined similarly
to equation (1), but limited to positive or negative fluctuations
in x and y directions (details in Fig. 2d,e and Supplementary
Information). The peaks of the conditional correlations correspond
to the characteristic stripy patterns of the orientational order shown
in Fig. 1d,e. The correlations manifest the collective dynamics
of the droplets: its positive peaks reveal distinct structures and,
at the same time, its negative peaks show how these structures
are unstable, dynamically breaking and reforming. Consider, for
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Figure 1 | The microfluidic 2D droplet ensemble and velocity fluctuations. a, The droplets were generated at a T-junction of water and oil streams and
injected at constant rate into a channel. b, The droplet geometry is disc-shaped, confined between the floor and the ceiling. The difference between the
velocities of the droplet and the surrounding oil (black) induces a dipolar perturbation (red). c, Image of water droplets carried by oil, dispersed with
fluorescent beads that moved during camera exposure and highlighted its flow lines (brightness inverted). Red lines show the droplet positions in time.
d,e, Images show ensemble with ρ0=0.18. Lines drawn from the centre of each droplet are proportional to δδδu, its velocity relative to the mean (that is, the
fluctuation of the dipoles around their mean). d, Red δux >0. Blue δux <0. e, Yellow δuy >0. Purple δuy <0. The rectangular frames highlight the angles
along which the colours are typically uniform or mixed, corresponding to positive and negative correlations.

example, a droplet pair with θ = 90◦: on average, the two droplets
move fast together along x (C+x (θ = 90◦)> 0) and simultaneously
move in opposite directions along y (C±y (θ = 90◦) < 0), which
either increases or decreases the distance between them. A pair of
droplets separated by θ ' 45◦ tend to move together downwards
along y and simultaneously move in opposite directions along x ,
which changes θ . Finally, we measured the variance of the velocity,
〈δu2x〉 =Cx(r = 0) and 〈δu2y〉 =Cy(0). The variances, in units of u2d,
increase with the area fraction ρ0, until they peak at ρ0∼ 0.25, and
then attenuate at higher density (Fig. 2f).

To explain the orientational order manifested by the velocity
correlations, we consider the interactions in the 2D ensemble of
hydrodynamic dipoles20. In the thin channel, the oil velocity can be
decoupled into Poiseuille flow along the z axis perpendicular to the
plane, and a 2D potential Stokes flow in the xy plane (Fig. 1b). Far
from the confining sidewall boundaries, the disturbance of a single
droplet to the oil velocity is the gradient of the 2D dipole potential,
8(r)=1u ·φ(r) with φ(r)= R2 cos(θ)/r and 1u= uoil−u is the
difference between the unperturbed oil velocity at the droplet
position (assuming the droplet is absent) and the droplet velocity.
Two opposing forces act on each droplet: a drag by the surrounding
oil and a friction force by the solid boundaries at the channel
floor and ceiling. As inertia is negligible, the forces are balanced,
resulting in a linear relation u=Kuoil, where the coupling constant
K ∼ 0.25 depends only on geometry and material properties8,16
(Supplementary Information).

Owing to the linearity of Stokes flow, in an ensemble with
inter-droplet distances much larger than R, the oil velocity is well

approximated by a superposition of the droplet dipoles and the
uniform oil flow, uoil(r)= 〈uoil〉+

∑
j∇8(r−rj). The equation of

motion of a droplet at r is u(r) = Kuoil(r), where uoil(r) is the
velocity of oil including the perturbations of all the other droplets16.
We represent corrections to this far-field approximation by an
effective velocity scale U for the interaction strength that will be
determined experimentally (see Supplementary Information):

u(r)= udx̂+U
∑
j

∇φ
(
r−rj

)
(2)

The correlation between the velocity fluctuations δδδu= u−udx̂ of
two droplets at a distance r is found from equations (1) and (2) to
be the averaged sumover all dipole pairs in the ensemble:

Cx(r)=U 2

〈∑
i,j

∂xφ(rj−r′)∂xφ(ri−r′−r)

〉
r′,t

(3)

and similarly for Cy . The summation over i and j represents the
interaction of the droplet pair with all of the other droplets in
the ensemble. Equation (3) can be separated into two parts: a
single-droplet contributionC I

x(r), including all termswith i= j, that
accounts for the velocity change of the two test droplets due to their
interactions with a third droplet at ri, and a dual-droplet part,C II

x (r)
including all interactions of the pairwith twodifferent droplets i 6= j.

We first consider the simple case of a randomly positioned
ensemble: if the positions of the ith and jth droplets are
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Figure 2 |Velocity correlations. a,b, Cx and Cy versus x and y at ρ0=0.18. c, Cx and Cy versus r for a vertical droplet pair (θ =90◦). The solid line is an r−2

curve. d,e, Cx,y versus θ at r=8R. Conditional correlations C±x,y reveal structures and dynamics in the droplet ensemble: C+x,y includes only the droplets with
δux,y(r′,t)>0, and C−x,y that is constrained to δux,y(r′,t)<0. The peak at C+x (θ=90) corresponds to fast droplets (δux>0), aligned perpendicular to the
flow, whereas the peak at C−x (θ=0◦) indicates slow droplets aligned along the flow. The peaks of C+y and C−y show that droplets aligned along diagonals at
θ '45◦ have correlated downwards velocity (δuy<0), whereas those aligned along θ '−45◦ diagonals move upwards (δuy>0). f, Velocity variance
〈δu2

x,y〉. g, Theoretical Cx,y given by equation (4) and Supplementary Eq. 17. h, Velocity fluctuations δux (purple) and δuy (violet) of two test droplets
typically have parallel or opposite signs owing to their interactions with a third droplet (light blue), depending on θ . Error bars represent uncertainty due to
temporal fluctuations of the measured correlations.

independent, then by symmetry the average over the product of
their dipolar fields vanishes,C II

x (r)=0, and henceCx=C I
x . The time

average in equation (3) can therefore be replaced by an integral over
a uniform density distribution, n0= ρ0/πR

2, that for r ∼> 8R yields
(Supplementary Fig. 2 for the full solution):

Cx (r)=U 2n0
∫

d2ri∂xφ(ri)∂xφ(ri−r)=ρ0U 2cos(4θ)(R/r)2 (4)

In addition, Cy(r) = −Cx(r). Equation (4) captures the three
salient features of the measured velocity correlations: the r−2
power law, the xy anti-symmetry, and the cos(4θ) angular
dependence. Interestingly, the velocity correlation is given by the
auto-correlation of ∇φ, which implies that the effect of an entire
random ensemble on the test-pair is equivalent to the average effect
of a third droplet. To elucidate this effect, Fig. 2h shows droplet
pairs (grey) at angles θ =0◦,45◦,90◦ and a third droplet (light-blue)
between each pair. When θ = 0◦,90◦ the third droplet’s dipole
has both a positive contribution to Cx , because it pushes the pair
to the same direction along x , and at the same time, a negative
contribution to Cy , because it pushes the pair in opposite directions

along y . When θ = 45◦, it has a positive contribution to Cy and a
negative contribution to Cx .

Remarkably, the velocity correlations originate from the inter-
actions of the pair with the entire ensemble and not from the
interactionwithin the pair. The latter is not included in equation (4)
and decays as (∇φ)2 ∼ r−4, much faster than the ∼ r−2 decay
measured at large distances. Moreover, the interaction within the
pair cannot explain negative correlations, because the forces that
any two droplets apply on each other are identical owing to the
symmetry of the dipole field,∇φ(r)=∇φ(−r).

The predicted peaks of the correlations at θ =±45◦ are observed
for ρ0<0.6 at an average angle of±41◦±2.5◦ forCx , and±38◦±2◦
for Cy (Fig. 2d,e). In addition, the peaks at θ = 90◦ and θ = 0◦
differ in amplitude, in contrast to the theoretical cos(4θ). These
differences may largely be attributed to dependencies between
droplet positions due to clustering and density waves20,24 that were
neglected. To refine equation (4) we consider excluded-volume
effects in the low-density limit, ρ0 � 1, and find that the dual-
droplet term C II

x no longer vanishes: C II
x (r)=−4ρ0C

I
x(r) for r�R,

whereas C I
x is unchanged, resulting in, Cx(r)= (1−4ρ0)C I

x(r) (see
Supplementary Information). Thus, excluded volume does not alter
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Figure 3 |Velocity variance determined by competition of single- and dual-droplet effects. a, Toy-model: a test droplet (black) surrounded by four
available slots (dashed circles) that are occupied by two droplets. As a result of excluded volume, in two out of three configurations, the dipole fields at the
test droplet are anti-parallel setting CII

y (0) negative. b, The pair-distribution function, n(2)(r), the probability to find a droplet r away from a reference
droplet is measured at different ρ0, and plotted for r‖x̂, peaks at r' 2R, indicating high probability to find droplets in contact owing to clustering. Broken
curves are n(2)(r) of randomly placed droplets in silico. c, CI

x,y(0) is positive, whereas CII
x,y(0) is negative. Both increase in magnitude with ρ0. Blue curves

are CI
x,y(0) and CII

x,y(0) calculated in silico. d, The sum [CI
y(0)+CII

y (0)]/U2 (right triangle) is similar to Cy(0)/u2
d (open circle). Blue curves are in silico

CI
y(0)+CII

y (0) (dots) and Cy(0) (solid line), which agree throughout the ρ0 range. Error bars represent uncertainty due to temporal fluctuations of the
measured correlations.

the spatial structure of the velocity correlations but introduces
a density-dependent inhibition to the correlation amplitude,
〈δu2x〉≡Cx(r= 0), which is proportional to ρ2

0 because it depends
on the number of droplet pairs.

The inhibitory effect due to excluded volume reflects a com-
petition between two density-dependent effects that determine the
observed peak of the velocity variance 〈δu2x〉=C I

x(r=0)+C
II
x (r=0)

(Fig. 2f). Here, C I
x(0)=U 2

〈
∑

i(∂xφ(ri− r′))2〉r′,t , which is positive
and C II

x (0) = U 2
〈
∑

i6=j ∂xφ(ri − r′)∂xφ(rj − r′)〉r ′,t . A simple toy-
model provides intuition why the second term is always negative
owing to excluded-volume effects (Fig. 3a). Consider two droplets
that can be positioned at the four corners of a square surrounding a
test droplet (black). Then, C II

x (0) is the product of the two fields
at the test-droplet’s location, averaged over all of the possible
configurations. From symmetry it is enough to consider 3 out of

the 12 possible configurations, where one droplet is fixed at the
bottom left corner and the other can occupy any of the other
three spots. In two of these configurations, the dipole fields have
opposite directions at the test droplet’s position, whereas only in
one configuration their directions are aligned. As a result, their
average product is negative, hence C II

x (0)< 0. Without the effect
of excluded volume, one would consider a fourth configuration,
in which both droplets occupy the same spot, forming a second
configurationwith aligned fields that nullifies the average product.

To compare the theoretical value of C I
x(0) + C II

x (0) to the
measured velocity variance 〈δu2x〉 (Fig. 2f), we measured the spatial
pair- and triplet-distribution functions that describe the non-
random distribution of distances between droplets (Fig. 3b and
Supplementary Fig. 3). These functions are used as weights in
averaging over the ensemble positions in calculating C I

x(0) and
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C II
x (0) (see Supplementary Information). Both functions peak at

distances of touching droplets but decay to a constant value for
larger distances. In agreement with theory, Fig. 3c shows that C I

x(0)
is positive whereas C II

x (0) is negative, both increasing in magnitude
with density ρ0, and have similar values for y . The computed
sum C I

y(0)+C II
y (0) in units of U 2 fits well to the measured Cy(0)

(Fig. 3d), which suggests that the interaction velocity scale U is
U ≈ ud throughout the measured range of ρ0 (Cx(0) is discussed
in the Supplementary Information). The theoretical far-field value,
U = (1−K )ud≈ud, matches our experimental result.

Finally, we computed the velocity correlations in silico by
randomly placing droplets, considering their mutually excluded
volume, and evaluating the inter-droplet dipolar forces (see
Supplementary Information). In agreement with theory, the
numerical calculation shows a cos 4θ symmetry and r−2 decay of the
correlations (Supplementary Fig. 4), as well as a peak at ρ0 = 0.34
in the velocity variances (Fig. 3d).

Similarly to a nematic liquid crystal, the hydrodynamic
dipoles exhibit partial order: positional correlations decay fast
owing to spatial disorder, whereas the orientational degrees-of-
freedom remain correlated over long-range. As in the 2D droplet
ensembles reported here, also in gravitational sedimentation of
particles in 2D and 3D, the velocity variance decreases at high
densities2,12,26. However, so far this generic decrease has lacked
a first-principles theoretical explanation. In Brownian quasi-2D
suspensions of particles in equilibrium, the dipoles are randomly
oriented and there is no symmetry-breaking direction. Hence,
at large distances velocity correlations are determined only by
two-body interactions11. Future studies may reveal how the velocity
correlations are coupled to dynamic clustering, which has an
important role in setting the fluctuations. We expect our results
to have applications in the design of active and self-propelled
systems27,28 as well as in droplet-based microfluidic devices used in
biology and chemistry29,30.

Methods
The channel was made of polydimethylsiloxane elastomer casted on amould, which
was prepared by lithography. After curing at 80 ◦C for 1 h, the channel was detached
from the mould and irreversibly attached on a polydimethylsiloxane-coated
glass slide16,20. The carrier fluid was light mineral oil (Sigma, M5904, viscosity
ηoil = 30mPa, density ρ0 = 0.84 gml−1) with 2% (w/w) Span-80 surfactant
(Sigma). The dispersed fluid was distilled water. The experiment was imaged
by a PCO.Sensicam (PCO) camera for about 100 s at 21 frames s−1. We used a
precise tracking algorithm (the Moses–Abadi algorithm)8 implemented in Matlab
(Mathworks) to analyse the images acquired in the experiment. Each droplet’s
centre position was tracked and followed between subsequent images to construct
its trajectory. The droplet velocities were computed by five-point time derivatives
of their x and y positions. To compute the velocity correlations Cx (r) we computed
the average product of the velocity fluctuations δux of all droplet couples within
the channel’s central half that were separated by r= (r,θ). The velocity fluctuations
were defined as the difference between the droplets’ individual velocities and the
locally measured mean velocity. Owing to the spatial and temporal fluctuations of
the mean droplet velocity, it was measured separately for each droplet pair. The
mean velocity was defined as the average velocity of droplets within a rectangle of
length W along x (centred at the mean x position of the droplet pair) and width
W /2 along y (centred at the middle of the channel).
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