Downloaded via ULSAN NATL INST SCIENCE AND TECHLGY on March 12, 2021 at 02:17:12 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

THE JOURNAL OF

PHYSICAL CHEMISTRY

LETTERS

A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JPCL

Using NMR to Test Molecular Mobility during a Chemical Reaction
Huan Wang,Tian Huang,and Steve Granick

Cite This:J. Phys. Chem. Lef021, 12, 23702375 I:I Read Online

ACC ESB [l Metrics & More | Article Recommendations ‘ * Supporting Information

ABSTRACT: We evaluate critically the use of pulsed gradieftespin nuclear magnetic

resonance to measure molecular mobility during chemical reactions. With raw NMR specifa. ;’\ <
available in a public depository, we monthe boosted mobility during the click chemical ) )
reaction (Wang et abcienc2020 369 53%5541) regardless of the order of magnetid %
gradient (linearly increasing, linearly decreasing, random sequence). Wenalsoasird .

mobility for the DieSAlder chemical reaction. The conceptual advantage of the former cherpj a / I
system is that a constant reaction rate implies a constant catalyst concentration, whergas’ hat of 4 i @
the latter is the absence of a paramagnetic catalyst, precluding paramagnetism as an objectiontig, 1, ==/ s
the measurements. The data and discussion in this paper show the reliability of experinféntsiwhen
one avoids convection, allows decay of nuclear spin magnetization between successive pti e&and'*r:‘x%ﬁ’% """ I
recovery of its intensity between gradients, anésafimsi-steady state during the time window | Random —
to acquire each datum. Especially important is to make comparisons on the time scale of theReactiof:?time(min) e
actual chemical reaction kinetics. We discuss possible sources of mistaken conclusions that are

desirable to avoid.

A surge of interest to understand moving entities thatliscuss changes in the relaxation time of nuclear spin
consume energy during the course of their motion, sanagnetization parallel to the external magnekit that
called‘active matt&r=>"is entering a phase that goes beyondcould lead to a change of signal intensity, a matter that is
an earlier focus on colloidal and nanoparticle active mobilitgstable by varying the relaxation delay"timé&inally, we

and, today, considers the role of molecules as actiféghlight that, to check the physical reasonability of
matter’*’>° We consider here pulsed gradientSggho  conclusions, mobility measurements should be compared to
(PGSE) NMR® The technique often is combined with a the time scale of actual chemical reaction kinetics.

di usion-ordered NMR spectroscopy (DOSY) analysis in The concept is summarizedrigure 1The liquid sample is
which one dimension represents chemical shift data whieounted in an NMR tube. After a pulse magnelticto align

the second dimension resolves species by thesiodi nuclear spins of the chemical moieties of interest, a linear
properties™*° This technique presents many attractivemagnetic eld gradient along the cylinder length encodes the
features. Unlike uorescence-based methods, it does noBPatial information. After a waiting time, during which the
require chemical tags on the sample. Unlike dynamic lighfemical moieties of interest experience sedfali, the
scattering, there is no minimum molecular®%iZelt signal is negated by pulses that recover the original nuclear
simultaneously idengis dierent chemical species and their SPINS the only signal left is from chemical moieties that
abundance in the same sample. It can be extended to out/@fgrated to a derent vertical location in theld gradient.
equilibrium situation&:%2%24 For example, it can discrim- These procedures can be accomplished in various ways; we
inate reactive intermediates of organometallics, determiniﬁgOpted one of the standard methods, to apply two subsequent

their aggregation number, solvation states, and the ider&'-hﬁ_ pulses, the exact Lever;e ofrﬁnqnulsde. In the concegt H
cation of new reaction intermediates based on the uniq IS measurement, the above procedure is repeated, eac

capability of this method to correlate structure and'Me With a dierent magneticeld gradient. The attenuated
2526 Intensity in the recovered signal, plotted against the gradient

mobility: . . . . .
Extending a recent study from this labofdtanyd our eld squared in these multiple experiments, gives using
9 y standard analysis a number proportional to the seliodi

response to a critical commeft,we evaluate here critically
the soundness of the PGSE method to assess molecuta:

mobility in common chemical reactions. As precaution8eceived: January 8, 2021
needed to avoid convection are discussed amply in thgcepted: February 25, 2021
literaturé®** we do not discuss them. The discussion in thig’ublished: March 3, 2021
paper dwells on two issues. We discuss the conditions to

satisfy, while acquiring each datum, the quasi-steady-state

condition in this out-of-equilibrium condition. Second, we
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Figure 1.Schematic concept of PGSE NMR. The liquid sample is mounted in a conventional cylindrical NMR tube. (A) A standard sequence of
pulses and magnetield gradient is applied to spatially encode spins of interest by dephasing, resulting a reduced signal after an echo pulse
applied. (B) It is standard to set up magnetic gradients with the magnitude of each of them, commonlyelésjisceetmearly increasing

sequence. This paper compares idings using a random sequence and a linearly decreasing sequence. (C) U$ierselbacient is

proportional, by a standard analysis, to a plot of logarithmic signal intensity against the squaridagdetia.

Figure 2Di usion data for the click reaction compared using linearly increasing, linearly decreasing, and random sequenetdsof A)agnetic
Chemistry of this reaction. (B, C) Kinetics of this reaction, showing smoothed data for the conditiorGrafretiaded vertical bar indicates

the time scaleS® min, needed for one measurement. (D) NMR spectra near the start (15 min) and end (120 min) of a reaction, showing the
NMR peak assignments. (inset) Enlarged catalyst ligand peaks. (E) Comparisons of data taken using three sequences of magnetic gradient
reactant peaks:$d) for 4.2 ppm and &h) for 2.9 ppm. (a, €) Ratio of dision coecients of chemical moieties obtained from a random
sequence (gray spheres) and a linearly decreasing sequence (navy triangles) to a linearly increasing sequencghjréctaegtes). (b

di usion coecient, relative tb, at the end of reaction, plotted against reaction time for data taken using linearly decreasing (b, f), random (c, g),
and increasing (d, h) sequences of mageddicPulse width = 1&. Gradient length = 1056. Di usion time = 50 ms. Relaxation delay time =

3 s (b, f). Pulse width = 18. Gradient length = 1108. Di usion time = 50 ms. Relaxation delay time =5 s (c, g). Reaction conditions: 250 mM
reactant, 20 mM catalyst.
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Figure 3.Di usion data for the click reaction with slower kinetic conditions closer to thad3@ Ingefased diision plotted against reaction

time for the alkyne reactant (A) and the azide reactant (B) with respective NMR peaks shown as insets. The time-dependent relative
concentrations of reactant and product (C) and the time-dependent reaction rate (D) appear to be close to those 2&deuled imidgh =

9.65 s. Gradient length = 11086. Di usion time = 50 ms. Relaxation delay time = 10 s. Reaction conditions: 250 mM reactant, 17.5 mM catalyst.
The PGSE NMR spectra were acquired using random pulse sequence as recommagaded in ref

coe cient. Given the claim that gradients composed of lineargequences, whereas we randomized the sequence using a
increasing, linearly decreasing, and random sequences gweuniform sampling method. Notice that two chemical
inconsistent resufts,here we compare suchdings with moieties on the same reactant display quantitagverdies,
measurements made in our laboratory. Our favorablbough both show dérences; intermediates of the chemical
comparison between the three procedures allows one teaction may also contribute in ways that presently are
quantitatively assess the quasi-steady-state assumptioningperfectly understood, as we noted previdi@ierall, the
which reliable measurement depends. ratio of the apparent dision coecient obtained by a
Figure 2shows data averaged from multiple independentandom sequence measurement, to that from linearly
experiments involving the aqueous click reaction; representecreasing sequence measurement, is unity within experimental
tive raw data from individual experiments are freely availalircertainty at all reaction times (a, e panels). One also notices
on a public depositofy.With chemical reaction conditions a tendency for a persistently slightly smallassidin
selected to be the same as in our original féploetaqueous  coe cient for an alkyne peak at 4.2 and an azide peak at 3.8
click reaction between alkyne and aZidgule 2A) was ppm during the rst 50 min, perhaps recting the
allowed to proceed at room temperature with reactant antbncentration consumption during this interval of most rapid
catalyst concentrations that produce a constant reaction rasaction rateRigure Z). This was not observed for the ligand
for the rst 80 min and reaction completion at 120 min peak 10, which is not consumed by this chemical reaction.
(Figure B,C), signicantly longer than th&3 min needed to It is claimed that changes of catalyst concentration during a
acquire each datum. Chemical shifts of relevant NMR peagisemical reaction can modify the relaxation time of reactants
are cleanly resolved-igure D). For the conditions so as to contribute sigoantly as a nondisive signal
specied”’ the relative change of peak intensity in one scaattenuation in a dision measuremetitbut this cannot be
is 0.2%, while to produce the magnetid gradient (16 the case for either catalyst molar abundance nor for abundance
scans) it is at most 3%, small relative to t8®5% imposed  of catalyst in the active oxidation state, as the reaction rate was
magnetic eld gradient intensity. The assertion that concenkinear during therst 80 min of the data shown here. This
trations change substantially while measuring each’datum signi es that the amount of active catalyst Cu(l) was constant,
not supported. so the remaining Cu(ll) if any in the reaction should be
Figure E shows data comparingdings obtained using constant as well. There may be interesting transient shifts of
three dierent sequences of magnegic linearly decreas- NMR peak intensityntensity, beyond the scope of this paper,
ing, random, and linearly increasiregarding the alkyne re ecting changes of solution conditions such as pH, but these
reactant at chemical shifts of 2.9 (peakMpanels) and 4.2  changes are too slow t@et steady state during acquisition of
(peak 2, 8d panels) ppm. The curves obtained from randomindividual data points.
sequences (c, g panels) are more scattered than for linearlffrom the perspective of understanding how mistaken
increasing (d, h panélsiand linearly decreasing sequences (bjnterpretations might emerge, note that it is imperative to
f panels), and we speculate that hardware niaynée this, as  optimize data acquisition parameters as the optimal pulse
the NMR instrument was designed and calibrated for linemarameters for dirent chemical moieties mayedi When
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Figure 4.Di usion data for the Di€lAlder reaction compared using linearly increasing, linearly decreasing, and random sequences of magnetic
elds. (A) Chemistry of this reaction. (B) Kinetics of this reaction, showing smoothed data for the condiffo(S)dfIR spectra near the

start (10 min) and end (60 min) of reaction, showing the NMR peak assignments. (D) Comparissimsahdasurements of solvent peak (1

in C) from three methods. (a) Normalized to data obtained with linear-increasing neddjgetidient, dusion coe cients measured with

random (circles) and linearly decreasing (triangles) magigsequences are plotted against reaction time. (b) Normélzedl ttee end of

reaction, the dusion coe cient measured with a linearly decreasing magihetcadient is plotted against reaction time. Delay between scans is

varied: 3 s (open symbols), 5 s (hidfd symbols), 10 sl{ed symbols). (c) Normalized i at the end of reaction, dsion coe cient

measured with random sequence of mageddigradient is plotted against reaction time. (d) NormaliZegaiothe end of reaction, the

di usion coecient measured with linearly increasing magektigradient is plotted against reaction time (these data are takenZmm ref

instrumental parameters fail to show a logarithmic attenuatidimat at the end of reaction against reaction time using the three
of intensity as a function of the magnetid gradient in the  methods, the raw data agree for linearly decreasing magnetic
relevant range of measurements, conclusions from analyzieffl gradient (panel b), random magnetid gradient (panel
those experiments will not be meaningful. The same daty and linearly increasing randoeid gradient (panel d).
acquisition parameters do not support meaningful analysisWwfthin the experimental uncertainty (5%, 4%, 3%), the
all peaks. Also it is helpful to select integration limits with carespective maximum values agree.
because NMR peak positions may shift slightly during reactionThe Diel§Alder reaction involves no metal catalyst, so an
re ecting transient changes of solution conditions. argument based on supposed changes of the metal catalyst
One observes irigure A (alkyne reactant) aridgure B concentratioff could not hold for this second example of a
(azide reactant) that reactantusion was faster during the chemical system in which PGSE NMR shows a boosted
reaction than after its completion, by factors from 1.2 to 1.8 usion during the chemical reaction. Moreover, molecules
Figure &€ shows explicitly the kinetics of this reaction,undergoing a chemical reaction may display time-dependent
reactant, and product reactions plotted againsFtiane: ® changes in relaxation time, unlike the case for equilibrium
shows the reaction rate plotted against tifnis number was  systems. A useful safety check is to use progressively longer
nearly constant for 15200 min, consistent with statements recovery times (D1) to probe for any systematic artifact and
in ref29 It is evident that a boosted uion was observed choose the shortest one that leads to a credible measurement.
during the chemical reaction regardless of all thede an earlier report we varied this quantity between 1.5 and 5 s,
considerations. observing thatndings were indistinguishable with 5 and 10 s
The reaction rate for the DiSlslder reaction in  delays’
acetonitrile, inferred from conventional one-dimensional Synthesizing other experimental concerns gleaned from
NMR, is plotted irFigure 8. The proton peak assignments surveying a long literatdfel4181923525303133544 \ya note
in *H NMR are shown irrigure €. Figure & shows the that specialists are well-aware that other concerns about the
excellent agreement obtained between magridtgradients PGSE NMR method include the possibility of electrical eddy
produced three dérent ways linearly increasing, linearly currents caused by fast switching of the applied gradient
decreasing, and random. The ratio of an apparestodi  pulse®**° gradient eld nonuniformity®** and convection
coe cient obtained by random sequence measurement to thairrents caused by temperature gratfiéh@mnd chemical
from a linearly increasing sequence measurement is unigactions one of whose products is a’¢a&ddy currents
within experimental uncertainty at all reaction times (panel a)sually are greatly reduced by the use of a shielded gradient
An explicit plotting of the apparentudiion normalized by system but cannot be fully excluded, but as eddy currents
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