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Is organic chemistry really growing exponentially?** 

 
Sara Szymkuć+,Tomasz Badowski+ Bartosz A. Grzybowski* 

Abstract.  In terms of molecules and specific reaction examples 

reported in the literature, organic chemistry features an impressive, 

exponential growth. However, new reaction classes/types that fuel 

this growth are being discovered at a much slower and only linear 

(or even sublinear) rate. In effect, the proportion of newly discovered 

reaction types to all reactions being performed keeps decreasing, 

suggesting that synthetic chemistry becomes more reliant on reusing 

the well-known methods. On the brighter side, the newly discovered 

chemistries are more complex than decades ago, and allow for the 

rapid construction of complex scaffolds in fewer numbers of steps. In 

this paper, we study these and other trends in the function of time, 

reaction-type “popularity” and complexity based on the algorithm 

that extracts generalized reaction class templates. These analyses are 

useful in the context of computer-assisted synthesis, machine learning 

(to estimate the numbers of models with sufficient reaction statistics), 

and also for identifying erroneous entries in reaction databases. 

 

 

Nearly two decades ago we published the first paper[1a] analyzing the 

development of organic chemistry from a network perspective – as 

we showed, the literature-reported reactions form a giant, scale-free 

network (“Network of Organic Chemistry,” NOC) that features 

relatively few but highly connected “hub” molecules and evolves 

according to statistical laws that have not changed from the times of 

Wöhler all the way to the present. Later, these trends were confirmed 

and extended by us[1b,c] and others[1d,e] to quantify other topological 

properties of the network and to relate its evolution to various 

economic aspects. On one hand, this early work was the cornerstone 

of our subsequent work on network-search algorithms[2] and 

computational synthesis planning (Chematica/Synthia), recently 

culminating in automated design and experimental execution of 

syntheses leading to medicinally-relevant targets[3a] as well as 

complex natural products[3b]. On the other hand, one aspect of the 

2005 paper[1a] caused some rather unexpected outcomes and 

interpretations. Namely, we showed therein that the numbers of 

known molecules and connections within the network (i.e., reactions 

making these molecules) grow exponentially with time – this result 

has since been interpreted consistently but overoptimistically as the 

knowledge base of organic chemistry expanding equally rapidly (in 

particular, so rapidly as that only data-driven AI systems can keep up 

with the pace; see ref. [4] and footnote [5]). This interpretation, 

however, entails a key fallacy in that specific reactions reported in 

literature are not necessarily new reaction types but rather repeating 

manifestations of the same reaction classes (e.g., thousands of 

esterifications, amide bond formations, or Suzuki couplings reported 

each year for different types of substrates). Here, we show that when 

the reactions reported in the NOC or in the patent literature[6] are 

grouped according to commonly recognized types/classes[7] – 

reflecting similar properties of different functional groups and 

generally sharing common reaction mechanisms –  the growth of our 

discipline is much less dynamic and, over the past few decades, has 

become linear or even sublinear. Only few thousands of new reaction 

types are reported each year and their proportion, compared to all 

reported reactions, keeps decreasing. On a more positive note, within 

these newly discovered reaction types there is a growing fraction of 

complex and multicomponent transformations that can generate 

complex scaffolds in fewer steps and offer improved atom and “pot-

efficiencies”[8]. These results can be considered from several 

perspectives. More narrowly, in the context of computer-aided 

synthesis planning, the limited rate at which chemistry expands 

means that expert coding of reaction rules is, at least for the 

foreseeable future, scalable and can be kept au courant. Our analyses 

also provide clues which of the reported reactions are reliable and 

which ones are likely erroneous and should not be taught to the 

machines (and also be removed from reaction repositories). More 

broadly, one may take these results as a challenge and ponder whether 

it is possible to break away from the nearly constant reaction 

discovery rate. Does this constancy – and, in fact, relative decrease 

with respect to all performed reactions – reflect chemistry gradually 

exhausting the possibilities in which atoms of relatively few types 

(Csp3, Csp2, O, etc.) can form/break bonds? Or can the discovery 

process be revitalized and accelerated by new technologies such as 

modern robotized systems capable of analyzing multicomponent 

mixtures and looking for unexpected reactivity patterns[9]?  

 

Figure 1. Reaction cores, core environments, and the challenge of 
automatically classifying reactions by type. Core atoms changing 
bonding patterns during the reaction are colored in red. One-bond 
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environments are, when considered, colored in blue. Environments two 
bonds away from the core are colored in green. a) Diels-Alder 
cycloaddition is uniquely and properly defined as a reaction type by the 
core atoms alone. Including various substituents on the diene or the 
dienophile would only serve to artificially increase the number of 
reaction templates. In contrast, in b), the core itself cannot distinguish 
between, e.g., N-acylation and substitution of vinyl chlorides via 
addition-elimination. In c), templates spanning environments two 
bonds away from the core are too wide and unnecessarily multiply 
reactions of the same type (here, acylation of alcohols). d) On the other 
hand, taking just one-atom environments may be too narrow. Not taking 
into account carbonyl/carboxyl functionality would produce a 
chemically nonsensical reaction template. This alkylation reaction can 
proceed because the EWG group helps increase the acidity of alpha 
protons. e) Irrespective of the width of the “environment,” one must 
often consider the identity of specific functional groups/atoms. In the 
alkylation of phenols shown here, Cl, Br, I act merely as leaving groups 
and should be combined into one template. Hydrogens were omitted 
for clarity. 

The cornerstone of our work is to automatically categorize literature-

reported reactions into distinct types. To do so, it is necessary to 

extract parts of the molecules that define these types. In some cases, 

it is sufficient to consider only the “reaction core”, i.e., atoms that 

change their bonding patterns and formal charges. For instance, 

reactions in Figure 1a can all be uniquely assigned as Diels-Alder 

cycloadditions based on the reaction cores (colored in red) spanning 

only the carbon atoms of the diene and the dienophile and not any 

substituents. In general, however, the “reaction cores” are too narrow 

– for instance, they are identical for and not able to distinguish 

between, e.g., N-acylation and substitution of vinyl chlorides via 

addition-elimination (Figure 1b). Such examples point to the need to 

consider wider environments – one or two bonds away from the core 

(in Figures 1c-e colored in blue and green, respectively). In this 

context, environments up to two bonds away from the core 

overspecify the reactions – this is illustrated in Figure 1c where this 

environment would incorrectly classify acylations of primary, 

secondary and tertiary alcohols as different reaction types. On the 

other hand, one-bond environments may not reflect all relevant 

mechanistic details – in the example in Figure 1d, the fact that the 

neighboring atom is not only “some carbon” but a carbon within an 

electron-withdrawing carbonyl/carboxyl group is essential for the 

acidity of the proton abstracted during the alkylation reaction. Yet 

another problem is illustrated in Figure 1e whereby one-atom 

environments of phenol alkylation reactions include the halides – in 

each individual case, this inclusion is proper to describe specific 

reactions, but in terms of a broader reaction type, all halides act 

merely as leaving groups. Such mechanistically identical reactions 

should be grouped into one reaction type. To account for these and 

many other nuances, we developed multiple heuristics grounded in 

chemical-mechanistic knowledge and specifying which environments 

should be applied and which groups should be assigned as equivalent. 

These heuristics are summarized below:  

(1) For cycloadditions such as Diels-Alder or 1,3-dipolar, the reaction 

core atoms are kept. However, for cycloadditions such as [2+2] De 

Mayo, we retain the one-atom environment since the presence of a 

EWG group is required (and substitution patterns without EWGs 

suggest alternate reaction mechanism).  

(2) For other reactions, one-atom environments are taken as default 

but with the following exceptions: 

(2a) If an alkyl or an aryl atom of the substrate is connected to a 

leaving group (halogens Cl, Br, I, sulfonyls, or leaving groups 

containing boron, e.g., boronic acids or esters, or tin, e.g., tributyltin) 

then only the core atoms and a leaving group are extracted as a 

template. This being said, we keep track of whether the alkyl carbon 

atom is flanked by one or two vs. three carbon substituents (to 

subdivide such general templates based on whether SN2 vs. SN1 

mechanism is more likely).  

(2b) Alkyl and aromatic carbons connected to “core” heteroatoms are 

not extracted. In general, heteroatoms connected with alkyl vs. aryl 

carbons share similar chemical properties and undergo reactions with 

the same substrates and via the same mechanism (e.g., both alcohols 

and phenols undergo acylation; similarly, alkyl and aryl thiols can 

react with the same partners).  

 (2c) Likewise, carbons connected by a single bond to a “core” carbon 

are not extracted. An exception to this rule is to include carbons 

within electron-withdrawing groups (EWGs: ketone, ester, amide, 

imine, carboxylic acid, aldehyde, nitrile, etc.; for a full list of groups 

please see SI, Section S1) that are connected to alkyl, alkenyl or 

alkynyl “core” carbons. The EWGs (i) increase the acidity of adjacent, 

α-alkyl protons and facilitate generation of carbanions that 

subsequently can react with various electrophiles, or (ii) make 

unsaturated bonds prone to attack of a nucleophile. This heuristic also 

allows to distinguish between mechanistically distinct reactions like 

Michael addition vs. hydroamination.  

(2d) If a “core” nonaromatic heteroatom has a neighbor which is, in 

turn, part of a double or triple bond, this multiple bond is kept. This 

is to distinguish between, e.g., esterification vs. etherification, or 

alkylation of amines vs. amides. We note that without this heuristic, 

hydrolysis of amides to carboxylic acids would result in an erroneous 

template in which, e.g., a secondary amine substrate is converted into 

an alcohol – such a reaction is unknown.  

 (2e) Aromatic nitrogen and phosphorus are extracted without 

neighboring atoms if these neighbors do not participate in the 

transformation. This heuristic prevents multiplication of 

mechanistically identical transformations that differ only in the 

structure of the heterocycle (e.g., alkylation or acylation of pyrrole 

and pyrazole). 

(2f) If a reaction involves opening of a three-membered ring, all 

atoms of the ring are retained in the template. This heuristic helps to 

correctly delineate core atoms for reactions of epoxides, aziridines or 

cyclopropanes.  

Two additional heuristics were applied to group mechanistically 

equivalent transformations:  

(3) Reaction differing in only a halogen atom were all grouped as one 

template. Likewise, if the sole difference was potassium vs. sodium 

cations, these reactions were also grouped.  

(4) Amides, sulfonamides, phosphoramides, and their derivatives 

were grouped into one category if a reaction took place on the 

nitrogen atom (whose reactivity is similar within these groups). 

Similar grouping was applied if nitrogen of thioamides, 

thiophosphinic amides, or their derivatives reacted.  

 

These template extraction rules were applied to organic reactions 

from the NOC collection and from the patent literature. We limited 

our analysis to database entries in which atoms changing their 

bonding patterns formed a graph with only one connected component 

(see SI, Section S2.5). In this way, we did not count towards the new 

reaction types those examples which, in reality, were “composed” of 

several known reactions performed simultaneously or in a multistep 

fashion at different loci (e.g., multiple protections or deprotections, 

simultaneous reduction of both a nitro group and a double bond). For 

reactions occurring at one locus, we additionally checked whether 

they could be represented as a sequence involving some most popular 

reaction types (Diels-Alder, click); such reactions were removed but 

other types of cascades were allowed. As described previously[1a,b], 

both sets were pruned for duplicate reactions as well as those that 

were missing substrates or products. In addition, reactions were 

deionized (to unify, say, COO- and COOH in products and substrates), 

and those reporting as products unstable intermediates (e.g., 

carbocations and carbanions) were removed. In the end, the filtered 

NOC collection comprised ~3,72 million reactions and the patent one, 

907 thousand reactions. Atoms across all these reactions were 

mapped using either our own MAPPET[10a] and/or IBM’s 
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softwares[10b,11], and the extracted templates were in the SMARTS 

notation.  

 

The templates derived as a result of these extraction (1,2a-f) and 

grouping (3,4) operations provided a satisfactory categorization of 

chemical knowledge into commonly recognized reaction classes 

according to similar properties of different functional groups. 

Naturally, there were some corner cases not distinguished by the 

methods we applied: for instance, SNAr and Buchwald coupling with 

an amine cannot be distinguished without inspecting reaction 

conditions (though such a subdivision would only serve to duplicate 

one reaction template). Conversely, one could argue that some 

reactions could be further grouped to decrease the template count. For 

instance, one could imagine combining all nucleophiles in SN2 

reaction into one template. We do not do so, however, because, these 

nucleophiles may have different chemical properties and their SN2 

reactions may require different conditions (e.g., alkylation of thiols 

usually proceeds without addition of base, at room temperature, and 

in various solvents; in contrast, alkylation of unactivated esters 

requires strong base to generate carbanion acting as a nucleophile, 

proceeds at low or very low temperatures, and solvent scope is 

significantly narrower, typically THF or diethyl ether). The finer 

granularity we apply in defining reaction types can, if anything, 

overcount some reaction classes – but even then, the growth of 

chemistry is still slower than the previously purported exponential. 

We also note that our templates are qualitatively different than those 

extracted by, e.g., RDChiral[12] which aims to extract detailed 

information about a specific reaction and does not classify functional 

groups according to similar properties (for details, see SI, Section S5). 

We are also not pre-supposing any “key” hand-coded templates as in 

ref. [4d].  

 
Figure 2. Discovery of reaction types in the function of time and 
for different popularities k. Each curve corresponds to different k, 
with specific values given in the legends. The trends are for a) NOC 
and b) patent datasets. c) and d) plot the number of reaction types 
divided by all reactions performed till a given year. For both NOC, c, 
and patents, d, this ratio decreases with time indicating the slow-down 
in the rate of new reaction discovery. 

With these preliminaries, we extracted ca. 310,000 templates from the 

NOC and only ca. 85,000 from the patent literature (which is in line 

with the industrially relevant syntheses relying on fewer chemistries). 

The patent templates are available at 

https://github.com/badtom/expchem/blob/main/data/templates_USP

TO.csv (the NOC templates are based on Reaxys’ proprietary data 

and cannot be publicly shared). We tracked the discovery of these 

reaction types as a function of time, t, and also of their synthetic 

usefulness/popularity measured as the minimum number of times, k, 

a given template has been used. The time dynamics is quantified in 

Figures 2a,b which plot how many templates, 𝑁(𝑘, 𝑡), were known 

by a given year. Different-color curves correspond to different values 

of k, for instance, red curve has the number of templates used in at 

least k = 5 reactions up to a given year. For the larger and more diverse 

NOC collection, the early growth was faster than linear but since ca. 

1980 transitioned to linear (for higher k) or even distinctly sublinear 

(lower k) (see footnote [13]). The recent (1980-2006) slopes of these 

curves are, at most, few thousand new templates per year: ~7500/yr 

for k = 1, ~2500/yr for k = 3, 770/yr for k = 10, and only 246 for k = 

30. Taking as practically useful reaction types that appeared k ≥ 3 

times (as in the expansion policy neural network in [4b]) translates into 

the modern-day corpus of ~95,000 reaction classes – interestingly, 

this is commensurate with the number of reaction transforms taught 

over the years to synthesis-planning programs such as 

Chematica/Synthia[2,3]. For the patents, the numbers of reaction types 

also increase approximately linearly with time, with slopes increasing 

slightly after 2009 (e.g.; ~3900/yr for k = 1, ~670/yr for k = 3, 240/yr 

for k = 10, and 99 for k = 30). The most pronounced increase in the 

slope is for k = 1 but, as we will discuss later, these reactions are often 

erroneous entries. We observe that for both the NOC and patents, the 

number of reaction types decreases steadily compared to all specific 

reactions executed (Figures 2c,d). We interpret this trend as yet 

another manifestation of the slowdown in the discovery of new 

reaction classes/methodologies relative to the exploration of 

synthesizable molecular space using already known reaction types.  

 

 

Figure 3. Distributions of reaction templates of different 

popularities. a,b) Doubly-logarithmic plots of template count, 𝑁(𝑘, 𝑡), 
as a function of popularity k. Different-color curves correspond to 
different years. c,d) Fractions of the most popular reaction types 
amongst all reactions for NOC (left) and patents (right) plotted as a 
function of time. Different curves give the fractions for the most popular 
5,10, 20, 50 and 100 reaction types.  

It is also interesting to consider the dependence of 𝑁(𝑘, 𝑡) on k and 

study the rate at which reaction classes gain popularity. In this context, 

the doubly logarithmic plots in Figure 3a and 3b reveal that for 

different times, 𝑁(𝑘, 𝑡) scales with k in a power-law fashion, with 

exponent close to -1, 𝑁(𝑘, 𝑡) ∝ 1/𝑘 . It follows that the numbers of 

templates that become very popular is much lower than those that are 

less popular – in fact, 𝑁(𝑘 + 1, 𝑡) −  𝑁(𝑘, 𝑡) ∝ 1/𝑘2 . This means, 

for instance, that the number of reactions reaching, at some instance 

of time, popularity of k = 50 is roughly 100 times smaller than those 

that reach popularity k = 5. Leading the list of these most popular 

reactions we find for the NOC amide synthesis from carboxylic acids 

and amines (k = 77,116), followed by alkylation of alcohols or 

phenols with primary or secondary halides/sulphonates (k = 70,863), 

and hydrolysis of esters (k = 64,813); for the patents, the highest k = 
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63,434 corresponds to the said amide synthesis from carboxylic acids 

and amines, followed by hydrolysis of esters (k = 38,088) and 

Buchwald Hartwig/nucleophilic aromatic substitution with amines 

with k = 32,694 (for the list of the top fifty types, see SI Section S4). 

Interestingly, the fraction of the most popular reactions amongst all 

reactions remains roughly constant (Figure 3c) for the NOC but 

increases with time for the patents (Figure 3d) – the latter observation 

indicates that simple, “basic” transformations continue to offer 

robustness sought in industrial applications. In fact, for the patents, 

the top 100 most popular reaction types account for ca. 60% of all 

reactions reported in the patent collection (light blue line in Figure 

3d). Also, the 𝑁(𝑘, 𝑡) vs. k dependencies allow us to estimate the 

number of reaction classes for which the number of specific reaction 

examples measured by k is large enough – say, from ~100 to, ideally, 

1000 and above – to construct meaningful machine learning, ML, 

models[14]. For instance, based on the NOC, one could construct ML 

models based on at least 1,000 reaction examples for 297 reaction 

types; with the relaxed requirement of only 100 examples, there could 

be ML models for 2838 types (which is, still, only ~1% of all reaction 

classes).  

Next, we consider the complexity of the reactions being discovered. 

As a measure of complexity, we use here the number of main 

product’s non-hydrogen atoms m that change their bonding patterns 

from the substrates. For instance, m = 1 reactions can be 

deoxygenation, carbonyl to alkane reduction, or O-desililation; m = 2 

corresponds to reactions such as amide bond formation or 

esterification, and m = 7 is seen in more specialized transformations 

such as, say, 4H-pyran ring formation (see examples in Figure 4a-g).  

Figures 4h,i quantify – respectively, for the NOC and patent 

collections – the fractions of all reactions (not reaction types) 

characterized by different complexities m and reported up to a given 

year. These fractions remain roughly constant meaning that chemists 

execute both simple and complex transformations with frequencies 

that have remained approximately constant for the past century. In 

contrast, Figures 4j,k plot similar dependencies but for reaction types. 

The key trend here is that as chemistry progresses, newly discovered 

reaction classes become more complex. For instance, hundred years 

ago, chemistry was dominated by m = 2 and m = 3 reaction types 

(esterification, acylation, etherification, Michael addition, etc.). In the 

NOC collection (Figure 4j), between 1960 and 1980, a crossover 

took place and nowadays most newly discovered 

reaction classes are those characterized by m = 4,5,6 

(e.g., 1,3-dipolar cycloaddition, Pauson-Khand 

reaction, Ugi reaction, Sakurai reaction, etc.). 

Interestingly, for the patent literature (Figure 4k), 

this cross-over is just taking place now, as m = 2,3 

reaction types are being overtaken by m = 4 (but not 

yet by m = 5,6). This is yet another manifestation of 

patent literature relying on simpler types of 

chemistries. 
 

One aspect of our analyses may have practical 

ramifications – namely, the k-dynamics from Figure 

3 can be a useful tool in automatic tracking of 

erroneous entries in reaction databases, which is 

important for avoiding false-positive reaction “rules” 

marring data-driven synthesis-design softwares. 

Recently, Toniato et al. presented an interesting 

deep-learning method[15] that assumed that erroneous 

entries are likely those that are most difficult to learn 

by the AI models and contain features rarely seen 

across the training set (though this definition also 

encompasses specialized but correct chemistries 

producing some rare scaffolds). Our analyses offer an 

alternative approach – namely, reaction types that 

retain k = 1 popularity for years (i.e., are never used 

again) are suspicious. Such reaction types may 

correspond to some highly specialized 

transformations but may also be database entry errors. 

In this context, we note that analysis based on the k 

popularity of reaction types is advantageous over 

analysis of specific reaction precedents – in fact, 

majority of specific reactions are nor 

repeated/reported multiple times and there is nothing 

wrong or suspicious in them retaining “unitary 

popularity” forever.  

 

To verify our hypothesis, we analyzed 280 reaction 

templates retaining k = 1 for at least 5 years (140 

examples from NOC and 140 from patents, 20 

randomly chosen per each value of complexity m = 

1,…,6, and at least 7). Comparing them to source 

publications revealed that in the patent collection, ca. 

60% were outright incorrect or highly suspicious 

(Figure 5); in the NOC collection, the percentage was 

lower but still significant, ca. 28%. With all of these 

Figure 4. Examples and dynamics of reactions and reaction types characterized 
by different degrees of complexity. Complexity is defined here by the numbers, m, of 
non-H atoms that change bonding patterns compared to the substrates (according to the 
reaction mapping). For instance, a) Deoxygenation reaction is characterized by m = 1. 
b) Amide bond formation, m = 2. c) Michael addition, m = 3. d) Formation of silyl enol 
ethers, m = 4. e) Nitrone-olefin [3+2] cycloaddition, m = 5. f) Four-component Ugi 
reaction, m = 6.  g) Formation of 4H-pyrans, m = 7. Plots below have fractions of reactions 
and reaction types characterized by different complexities m and known till a given year. 
The colors of the curves correspond to examples of different-complexity reactions given 
above (values of m are also given in the legends). h,i) Plot fractions of all reactions for, 
respectively NOC and patents. j,k) plot fractions of reaction types for NOC and patents. 
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examples tabulated and commented at 

https://github.com/badtom/expchem/blob/main/data/rare_not_new_r

eactions (files NOC_rare_ not_new.csv and 

USPTO_rare_not_new.csv), we observe that the main problems were 

incorrect structures of substrates or products, substrates entered as 

products (or vice versa), solvent or reagents given instead of 

substrates (especially in patents), and multistep reactions written as 

one transformation (unless performed one-pot, a combination of two 

known reactions cannot be classified as a new reaction type). 

Extrapolating the „error rates” to the entire NOC and patent 

collections leads to an estimate that some 36,000 and 29,000 k = 1 

examples these repositories contain might be erroneous. Furthermore, 

for the patent collection, the k = 1 reactions contain unrealistically 

high proportion of multicomponent reactions, MCRs, some 30% of 

the total (compared to only 6% in the NOC). Inspection of a sample 

of these reactions (listed and commented on at 

https://github.com/badtom/expchem/blob/main/data/USPTO_rare_m

ulticomponent_reactions.csv), revealed that 86% were erroneous and 

94% were incorrectly classified as multicomponent reactions in 

which solvent, base or reagent was entered instead of substrate. 

Assuming similar rates hold across the entire patent collection, we 

estimate that the combined k = 1 @ 5 yr and MCR sets (not double-

counting the conjunction of these two sets) contain ca. 36,000 

erroneous entries – that is, some 40% of the entire patent collection. 

This helps us understand why, for instance, AI-based synthesis-

design programs trained on USPTO often give chemically 

nonsensical suggestions[7] – these suggestions reflect the poor quality 

of the underlying reaction set from which the reaction templates/rules 

are automatically extracted. We advocate that at least for the USPTO 

set, k = 1 MCRs could all be removed automatically, as the likelihood 

of them being erroneous is very high; from the remaining subset, 

reactions retaining k = 1 popularity for 5 years should be extracted 

and carefully inspected by expert chemists (which, given the few tens 

of thousands of such entries, would be a tedious but realistic 

undertaking). 

 
Figure 5. Examples and correctness statistics of low-popularity 
reaction types. a) An example of a correct but highly specialized 
reaction template that has maintained k =1 popularity for at least 5 
years. The template itself is delineated by red bonds; gray bonds 
specify the remaining parts of the specific substrates/products as 
reported in [16a]. b) Another example but this time erroneous on account 
of the incorrect structure of the product. The correct reaction from the 
source publication[16b] is shown below. c) Histograms summarizing the 
counts of correct and incorrect k = 1 @ 5 yr templates based on 140 
examples from the NOC. Different pairs are for different values of 
reaction complexity, m (20 examples for each and calculated based on 

atom-mapping) d) Analogous histogram but for 140 examples from 
patents. 

 

To sum up, we showed that in terms of reaction discovery, organic 

chemistry expands slower than generally assumed and becomes more 

reliant on well-known reaction types. These trends are unlikely to be 

artifacts of a particular reaction set as they are seen both in the NOC 

and patent collections curated in different ways, by different 

organizations, and with different focus (academic for NOC vs. 

industrial for USPTO). One reinvigorating trend is that increasing 

fractions of newly discovered reactions become more and more 

complex (m > 4) – since such reaction are often multicomponent (cf. 

Figure S2) or cascade transformations, they fit well with the aim of 

modern chemistry to reduce reaction operations and increase pot 

economy. In the context of chemoinformatics, the reaction-type 

templates we defined here (1) can allow for more objective scrutiny 

of reaction collections to estimate their true diversity (i.e., numbers 

of distinct chemistries rather vs. multiple manifestations of the same 

reaction types) and also identify erroneous entries; and (2) can help 

assess which reaction classes encompass sufficient numbers of 

precedents (measured by popularity k) to allow for accurate machine 

learning models reflecting reaction mechanism (as in [14]).    
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Is organic chemistry really growing exponentially? 

 

TOC TEXT:  

Although the number of published reaction examples 

continues to increase exponentially with time, the 

number of new reaction types being discovered grows 

only linearly or even sub-linearly. As a discipline, we 

rely on re-using the most familiar and popular reactions 

classes, although we also discover increasingly more 

complex transformations, especially in recent years. 

Analysis of reaction-type dynamics is a useful tool with 

which to estimate the numbers of meaningful machine-

learning models that can be constructed and also for 

tracing suspicious/erroneous entries in reaction 

databases.  
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