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Abstract: A thermodynamically guided calculation of free
energies of substrate and product molecules allows for the
estimation of the yields of organic reactions. The non-ideality
of the system and the solvent effects are taken into account
through the activity coefficients calculated at the molecular
level by perturbed-chain statistical associating fluid theory
(PC-SAFT). The model is iteratively trained using a diverse set
of reactions with yields that have been reported previously.
This trained model can then estimate a priori the yields of
reactions not included in the training set with an accuracy of ca.
� 15%. This ability has the potential to translate into
significant economic savings through the selection and then
execution of only those reactions that can proceed in good
yields.

Performing a reaction and laborious work-up only to
discover a few-percent yield is probably one of the most
frustrating experiences of the chemical profession. In this
spirit, the ability to estimate the yields of organic reactions
before they are actually performed could translate into
immense economical (and environmental) savings as it
would guide the chemists to perform only those reactions
that have a realistic chance to proceed in decent yields. Since
most reactions in organic chemistry are under thermodynamic
control,[1] the principles of thermodynamics appear a suitable
starting point for analyses in which reaction yields would be
related to appropriately defined and optimized reaction free
energies DG (Figure 1a). While simple in concept, precise

calculation of free energies of structurally diverse organic
molecules is a rather difficult task since even subtle variations
in the molecular structure may drastically change the Gibbs
free energy of molecule formation. Additionally, any realistic
estimates have to consider non-idealities of a system[2] at
a particular concentration, temperature, and pressure; these
non-idealities are often embodied in the activity coefficients,
which unfortunately are difficult to determine experimentally
and are often overlooked. It follows that any generally
applicable yield calculations must rely on molecular-level
theories that need to be carefully adapted (or even extended)
to account for structural diversity of organic molecules. In
light of these difficulties it is perhaps not surprising that to
date there has been only few attempts to attack the problem;
for example, Hoffmann et al.[3] calculated the activity-based
reaction constants over a narrow set of reactions while
Hukkerikar and co-workers used structure-based correlations
to estimate free energies of individual small organic mole-
cules[4] but not of complete chemical reactions. Most impor-
tantly, there has been no example reported of a model that
would not only correlate experimental and calculated yields
for a training set of reactions, but would then also validate the
predictions of the model for other test compounds not
included in the original training set.

This is precisely what we attempted in the current work by
i) calculating free energies of formation of compounds by
assuming additive contributions[4] of their constituent frag-
ments/functional groups; ii) applying the molecular-level
perturbed-chain statistical associating fluid theory (PC-
SAFT)[5] to incorporate the activity coefficients and equilib-
rium concentrations; and iii) optimizing the group contribu-

Figure 1. Representation illustrating the decomposition of substrate
and product molecules into functional groups, calculation of free
energy from group contributions, and of the activity coefficients from
PC-SAFT molecular theory.
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tions on a diverse training set of 23 000 reactions for which the
yields and full stoichiometries have been reported. We then
tested the predictive power of the model thus built against test
sets of other reactions (again, structurally diverse) achieving
the accuracy of yield prediction to within 15 %. While the
model rests on several simplifying assumptions (which we
emphasize below), the level of accuracy is already practically
relevant as it allows for the statistically significant a priori
discrimination between poor-, average-, and high-yielding
reactions.

The underlying thermodynamic principle is illustrated in
Figure 1 and has two parts to it. On one hand, substrate and
product molecules (species indexed i) of a given reaction are
partitioned into smaller fragments/functional groups for
which Gibbs free energies of formation, Gform

i , are calculated.
The summation over these free energies with appropriate
stoichiometric coefficients (ni) then gives DGcalc. These values,
however, are not yet accurate since they do not account for
any non-idealities of the system (for example, solvent effects);
consequently, they constitute only our initial guess values
which need to be further optimized. This we do by training the
model based on previously reported yields. From these
experimentally recorded yields and from the activity coef-
ficients calculated based on the molecular-scale PC-SAFT
theory, and correcting for solvent effects, we back-track the
experimental reaction free energies, DGexp. We then compare
the values DGcalc and DGexp and iteratively adjust the values of
group contributions Gform

i until convergence (that is, until the
correlation between DGcalc and DGexp is maximized). The
values of group contributions, Gform

i , optimized in this way are
then used to make predictions of free energies and yields of
other reactions, not included in the training set. All of the
theoretical details included in the Supporting Information
(Sections S2–S6); the key steps of the above procedure are as
follows.

1) Choice of test set. As a training set, we chose and
manually curated[6] a set of 23000 previously reported
reactions for which reaction conditions, stoichiometries, and
experimental yields were all available. The set was chosen at
random with the proviso that it contained both small and
large molecules (MW between 100 and 1000) in proportions
similar to those in the entire body of known organic
reactions[7] (Supporting Information, Figure S10). The set
was structurally diverse as evidenced by the pairwise Tani-
moto coefficient[8] similarity map of reaction substrates and
products (Supporting Information, Figure S11) and by clus-
tering analysis (Figure S12).

2) Decomposition into groups. All participating molecules
were decomposed into 296 functional groups listed in the
Supporting Information, Table S2 for which the initial (guess)
values of Gibbs free energies of formation at 298 K, Gform, 298 K

i ,
were taken from Ref. [4] (Supporting Information, Table S3).
The decomposition procedure was hierarchical in the sense
that functional groups were matched against the molecule of
interest in the descending order of their complexity (that is,
more complex groups were matched first.[9]

3) Calculation of initial-guess reaction free energies.
Thereafter, free energies of formation at 298 K of all
substrates and products were calculated by summing-up

group contributions, and the reaction free energies were
obtained from DGcalc = �ini G

form, 298 K
i , where ni are the stoi-

chiometric coefficients. These initial-guess values were fur-
ther corrected to the previously reported temperatures using
heat capacities, enthalpies, and thermodynamic relationships
(Supporting Information, Section S6 and Table S4).

4) Independent calculation of reaction free energies from
experimental yields. As we already mentioned, the values of
niG

form
i and DGcalc calculated without considering any non-

idealities were inaccurate and, as we verified, could not be
used to predict previously reported yields. Consequently, we
trained our model against experimental yields and the non-
idealities/solvent effects they entailed. To do so, we first
converted the experimental yields, x, to molar fractions, xi, via
x = (n0

i¢xin
0)/(xin¢ni), where n0

i stands for the initial number
of moles of substance i, n0 denotes the total number of initial
moles, ni are stoichiometric coefficients, and n is the so-called
total stoichiometry coefficient defined as n = �ini. Next, to
account for non-idealities, we calculated activity coefficients
gi of all substances. These calculations were based on the well-
validated PC-SAFT molecular theory[10, 11] in which free
energies of molecules comprise terms dues to hard-chain
interactions, dispersion attractions, and short-range hydrogen
bonding (Supporting Information, Equations S6–S24).
Accounting for solute–solvent interactions but not for
solute–solute ones (that is, taking infinitely dilute solutes in
liquid solvent as the reference points for substances), the free
energies could be converted into fugacity coefficients (Sup-
porting Information, Sections S2–S4). We note that the high-
dilution assumption simplified the calculations immensely
(indeed, we found that otherwise they would be computa-
tionally prohibitive owing to extensive multicomponent phase
equilibria calculations for every single reaction in our data-
base) while being realistic for typical organic reactions (for
example, for 1 mm concentrations, the average distance
between the molecules is on the order of 12 nm; for 100 mm
it is on the order of 2 nm). Finally, the activity coefficient of
every species i was calculated as a ratio of the fugacity
coefficients, f, of the pure solvent and the dilute (non-
interacting) solute gi = fpure solvent/fdilute solute.

With the details of all these lengthy calculations relegated
to the Supporting Information (Sections S2–S4), the key thing
to note is that with the knowledge of both the composition of
the reaction mixture xi and the activity coefficients gi we can
use the mass action formula to derive reaction free energies as
DGexp =¢RT ln

Q
(xigi)

ni. We emphasize that using the activ-
ity coefficients is essential for this approach to be meaningful
and accurate; a na�ve expression based solely on the mole
fractions (that is, DGexp =¢RT ln

Q
(xi)

ni), would be valid only
for ideal solutions at standard conditions.

5) Optimization of group free energies. The last step of the
analysis was to optimize the values of group contributions
Gform

i . To this end, an objective function was defined as OBJ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP n
j¼1ðDGexp¢DGcalcÞ2=n

q
, where n = 23 000 is the number of

reactions in the training set. Free energies of groups Gform
i

were optimized iteratively to minimize the OBJ by applying
the globally convergent Newton optimization technique.[12]

Each iteration involved changing the values of Gform
i until

convergence of OBJ below a desired threshold was achieved.
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At the same time, the activity coefficients were calculated
only once at the beginning of the routine, since their values do
not change in each iteration.

The above optimization procedure was implemented on
a NorthwesternÏs Quest computer cluster using a single
processor and convergence was achieved after about four
weeks of calculation. The results in Figure 2a show that the

optimized values of Gform
i and the related DGcalc values

correlated against the previously reported derived values with
R2 coefficient close to 0.9. Moreover, when the free calculated
free energies were converted to reaction yields, the correla-
tion was still very high, with R2 = 0.86 (Figure 2b).

Three remarks are in order. First, it is important to note
that the optimization procedure involving 296 free parame-
ters (that is, Gform

i values of groups) is not necessarily
guaranteed to converge. In this light, our choice of the initial
guess values is a judicious one, as it gives robust convergence
to desired threshold levels. Even though the existence of
other initial parameter sets that would also give convergence
cannot be excluded with certainty, we were not able (despite
multiple tries) to identify such sets. In particular, the initial
guess taken without calculating activity coefficients and
correcting for non-idealities did not lead to a predictive
model, again emphasizing the importance of the thermody-
namic basis of our approach (rather than it being just
a multidimensional parameter optimization).

Second, in our approach we converted experimental
yields into free energies and then optimized these values
against free energies calculated from first principles. Another
approach could be imagined in which the calculated guess
free energies are first converted into yields that are then
optimized against experimental yield values. However,
because yields are non-linear (exponential) functions of
reaction free energies, the optimization procedure is signifi-
cantly more challenging: in fact, we were not able to achieve
satisfactory convergence of calculated versus experimental
yields.

Third, inspection of specific molecules indicated that
largest errors in the analysis stem from imperfect decom-
position of molecules into functional groups. One possibility
here is that the molecules include motifs that are not in the list
of 296 groups. Naturally, one could increase the number of
groups; however, accounting for all types of, for example,

exotic heterocycles would bring the number to several
thousand groups for which multivariate optimization
becomes unrealistic. The choice of 296 groups yielding
correlation coefficients close to 0.9 appears a viable tradeoff
between the computational requirements and the accuracy of
the method. Another important source of errors is in cases
when the algorithm incorporates bonds that are actually
made/broken in a reaction to two different groups (that is,
bond assigned to one group in reactants, but to another group
in products). In this way, the bond formation free energies are
not properly accounted for and the yields are nonsensical: we
observe this problem in about 10 % of the molecules, which
were eliminated from the dataset.

So far, we have shown that calculation parameters can be
successfully optimized to reproduce the previously reported
yields for training set reactions. For any practical relevance,
however, our model needs to be able to predict (without any
further training/optimization) the yields of reactions not
included in the training set. To do so, we have chosen at
random additional m = 3000 previously reported reactions
with known yields. This test set was structurally diverse, as
evidenced by the pairwise similarity maps such as that in
Figure 3a (see also the Supporting Information, Fig-
ure S2a, b). The key result in Figure 3b shows the map
correlating literature and calculated yields for the entire test
set: there is a clear trend along the diagonal with Pearson
correlation coefficient[13] of 0.68. Also, Figure 3c plots the
means and standard deviations of the absolute differences
between predicted and experimental yields j xpred¢xexp j . To
detect any potential systematic biases and determine asymp-

Figure 2. Correlations between experimental and calculated a) reaction
free energies and b) reaction yields. Correlations were optimized for
the n =23 000 reactions from the training set.

Figure 3. Prediction of reaction yields over the test set and its subsets.
a) A map of pairwise Tanimoto coefficients calculated for the primary
products of the m =3000 reactions indicates that the test set is
structurally diverse (blue color corresponds to low similarity; see also
the Supporting Information, Figure S2). b) Histogram of the numbers
of reactions characterized by given values of calculated and experimen-
tal yields (xexp,xpred). Data is scattered within about 15% of the (0,0) to
(100,100) diagonal corresponding to perfect prediction. c) Average
values and standard deviations of jxpred¢xexp j calculated for various-
size subsets of the test set. d) The average values and standard
deviations of jxpred¢xexp j for molecules of different molecular weights.
The accuracy of the model does not depend on MW.
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totic behavior, this analysis was performed on various sub-sets
{mi} of the entire test set {m}. Specifically, we chose eleven
sizes of the smaller subsets {mi} = 50,100,200,300,…1000. For
each size, we generated ten samples (chosen randomly from
amongst the entire m = 3000 molecules of the test set). We
then calculated j xpred¢xexp j for each set and then took average
and standard deviation for each mi. The results evidence that
as the size of the test set increases, the difference between
calculated and experimental yields asymptotically approaches
about 15% with statistical standard deviation of � 2%.
Moreover, in Figure 3d we summarize calculations in which
we analyzed the values j xpred¢xexp j as a function of molecular
weights of the reaction products; as seen, there is no
systematic trend. Together, these findings show that our
model predicts reaction yields with an accuracy of � 15%
irrespective of the mass and complexity of the reacting
molecules.

The latter point is further illustrated in Figure 4 a–d, which
compares predicted vs. experimental yields of reactions
selected from some classic syntheses leading to relatively
complex natural products. A related and important issue is
the performance of the model in the light of inherent
variability of literature reported yields. Here, we examined
two additional test sets. The first was based on a sample of 200
reactions from Organic Syntheses (all listed in the Supporting
Information, Section S8), which were run on relatively large
scales and independently checked by a second laboratory. The
quality of the algorithm predictions (Supporting Information,

Figure S14) was about 16.3� 2% in terms of the average
absolute error; that is, similar to the error for the 3000 Reaxys
test set. In the second case, we examined reactions performed
in industry over many years in independent batches; this
particular dataset was generously provided to us by ProChi-
mia Surfaces and is listed in the Supporting Information,
Section S9. Even though the experimental yields had an
inherent spread (� 3–15% from the average yield), the
theoretical predictions still matched the average experimental
values to within 15.7� 11% absolute error. Finally, we
considered whether the predictions of the algorithm reflect
not only the structures of the substrates/products but also
reaction conditions. For this case, Figure 4e,f have two
illustrative recently reported examples, where the reaction
yields were found to vary drastically upon often subtle
changes in the structure of the solvent molecules; again, the
theoretical predictions reproduce the experimental trends.

The last issue we wish to signal is the scalability of the
predicted yields to large-scale reactions. In principle, all the
considerations of the present work are independent of scale,
since reaction free energies per mol (from which the yields are
derived) are intensive variables. In practice, however, the
yield is affected by the design of the reaction vessel (for
example, quality of mixing in a reactor) and, above all, by the
fact that under scale-up conditions, the Gibbs free energy of
reaction is affected by heat loss (dissipation).[21] Theoretical
discussion of such effects along with an illustrative example of
an industrially relevant reaction is provided in the Supporting
Information, Section S7.

In summary, the model we developed is, to the best of our
knowledge, the first successful attempt to estimate the yields
of organic reactions with any practically relevant accuracy.
Even though the model does not offer single-digit accuracy
(which is unrealistic given the variability of experimental data
on which it is trained), it can robustly distinguish between
poor, average, and high-yielding reactions with statistical
significance. This capability can be relevant to synthetic
planning, including computer-assisted synthesis,[14] in which
a chemist is often offered large numbers of synthetic choices
from which only few can be executed.
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