
Angewandte
International Edition

A Journal of the Gesellschaft Deutscher Chemiker

www.angewandte.org
Chemie

Accepted Article

Title: Prediction of major regio-, site-, and diastereoisomers¬ in Diels-
Alder reactions using machine-learning: The importance of
physically meaningful descriptors

Authors: Wiktor Beker, Ewa Gajewska, Tomasz Badowski, and Bartosz
Grzybowski

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). This work is currently citable by
using the Digital Object Identifier (DOI) given below. The VoR will be
published online in Early View as soon as possible and may be different
to this Accepted Article as a result of editing. Readers should obtain
the VoR from the journal website shown below when it is published
to ensure accuracy of information. The authors are responsible for the
content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201806920
Angew. Chem. 10.1002/ange.201806920

Link to VoR: http://dx.doi.org/10.1002/anie.201806920
http://dx.doi.org/10.1002/ange.201806920



 

 
1

Artificial Intelligence DOI: 10.1002/anie.201((will be filled in by the editorial staff)) 

 
Prediction of major regio-, site-, and diastereoisomers in Diels-Alder 
reactions using machine-learning: The importance of physically 
meaningful descriptors ** 
Wiktor Beker†, Ewa P. Gajewska†, Tomasz Badowski, Bartosz A. Grzybowski* 

Abstract.  Machine learning can predict the major regio-, site-, and 
diastereoselective outcomes of Diels-Alder reactions better than 
standard quantum-mechanical methods and with accuracies 
exceeding 90% provided that (i) the diene/dienophile substrates are 
represented by “physical-organic” descriptors reflecting the 
electronic and steric characteristics of their substituents and (ii) the 
positions of such substituents relative to the reaction core are 
encoded (“vectorized“) in an informative way.  
 
Recent years have brought an explosion of interest in machine 
learning (ML) algorithms, which are being gradually adopted by the 
chemical community (and chemical industry[1]) to predict biological 
activities,[2a] solubilities,[2b] or crystal structures[2c] of small 
molecules, properties of organic photovoltaics,[2d,e] NMR,[2f] mass[2g] 
and IR[2h] spectra, atomistic potentials,[2i] quantum-chemical 
parameters,[2j] or optimal reaction conditions.[2k,3g] In the context of 
synthetic organic chemistry, ML techniques have been explored to 
predict reaction outcomes or substrates[3a,b] although their 
applicability is naturally limited to reaction types for which the 
reaction statistics are abundant enough to enable meaningful 
learning (thousands of literature examples according to Table 4 in 
the SI to ref [3i]; see also  [3c]). In a recent example of ML application, 
Segler et al. [3d] developed a deep neural network to distinguish 
literature-reported (“correct”) from artificially created (“incorrect”) 
reactions, though this was done without taking into account any 
reaction conditions which is a drastic oversimplification given a 
myriad of examples in which the same substrates can give different 
products depending on conditions used. In our own attempts to 
predict the yields and times of organic reactions,[3e] ML methods 
trained on ca. 0.5 million literature-reported reactions using various 
sets of chemical descriptors were able to correctly categorize these 
reactions as high-vs-low-yielding or as rapid-vs-slow only in, 
respectively, ~65% and ~75% of cases. As we pointed out, such 

rather moderate accuracies reflected the inability of commonly used 
structural descriptors (be it, molecular descriptors, fingerprints, or 
chemical-linguistic[3e,f] fragments) to capture the nuances of 
chemical reactivity. This point of view was substantiated in a recent 
study by Ahneman et al.,[3g] who showed that with descriptors that 
capture electronic effects, a random-forest classifier performed 
much better and was able to correctly predict the yields of 4608 C-N 
cross-coupling reactions to within 7.8% RMSE. Still, such success 
stories remain sparse and ML methods remain largely untested in the 
problems synthetic experts might find useful (and non-trivial to 
predict based on their “human knowledge”), have rarely been 
extended to reactions involving stereochemistry, and have not been 
systematically benchmarked[3h] against other existing theoretical 
tools. These considerations motivated our current work in which we 
apply ML methods to predict the major outcomes of one of the most 
powerful organic reactions, the Diels-Alder, DA, cycloaddition[4]. 
On a diverse set of examples – including transformations used in the 
syntheses of complex natural products – the random forest, RF, 
classifiers we construct achieve unprecedented accuracies: 93.6% 
for the prediction of regioselectivity, 91.3% for site-selectivity, and 
89.2% for diastereoselectivity. Additionally, we perform a series of 
comparative tests that substantiate the following conclusions which 
we see particularly important given the current interest (and often 
hype) surrounding artificial intelligence: (1) High accuracies are 
achieved only if the machine is provided some chemical “insight” 
about the reaction (in particular, information about reaction’s core 
and key substituents); (2) The key to maintaining such high 
accuracies beyond examples similar to those on which the system 
was trained is not the choice of a specific ML method (e.g., RF vs. 
neural networks) but rather the use of descriptors/features that 
capture – as in classic physical-organic chemistry – both electron 
donating/withdrawing propensities (here, Hammett constants[5a,b]) 
and steric characteristics (TSEI indices[5c]) of the substituents on the 
diene and the dienophile. (3) Remarkably, with such physically 
meaningful descriptors, the accuracy of ML can be significantly 
higher than the values obtained with standard quantum-mechanical, 
QM, methods (~82%). These considerations lead us to conclude that 
although ML models cannot possibly rival QM in terms of 
generality, they can provide an accurate and rapid (~0.5 s vs several 
hrs in QM) alternative in specific synthetic problems for which 
numerous literature precedents (like the DA) allow for meaningful 
model training. With the hope of popularizing this vision, we make 
our DA predictor freely available to the academic community at 
http://dielsalderapp.grzybowskigroup.pl/. 

Diel-Alder cycloadditions are very effective in building 
structural complexity but in planning their synthetic use, when the 
substrates bear multiple substituents, one may need to consider their 
regio-, site- or diastereoselective outcomes (Figure 1). The problem 
of predicting regioselectivity is an old one and it is generally 
accepted that relative arrangement of the diene vs. dienophile is 
dictated by the overlap between their frontier (HOMO/LUMO) 
orbitals in the transition state. Accordingly, many authors have 
carried out QM calculations[6] with the aim of predicting 
regioselectivity from reactivity indices and frontier molecular 
orbitals; unfortunately, these studies have been limited to very small 
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sets (tens of examples) of structurally related substrates precluding 
generalization.[6b,6d] Regarding site-selectivity and 
diastereoselectivity, we are unaware of any theoretical models to 
predict such outcomes.  

 

 

Figure 1. Examples of possible outcomes of the Diels-Alder reactions 
taken from some “classic” total syntheses. Products that were 
experimentally obtained are correctly predicted by our RF classifier. 
The incorrect products are shown in the rightmost column; in the first 
two examples, none of several possible stereoisomers was formed 
and so we do not specify the newly formed stereochemistry. a) 
Regioselectivity in the DA reaction used by Snyder et. al. in the total 
synthesis of Rippertenol[7a] is dictated mainly by electronic factors. b) 
Site-selectivity in the DA reaction used by Gagnon and Danishefsky 
en route to Xestocyclamine A.[7b] c) Diastereoselectivity of the DA 
reaction performed during the preparation of the first key intermediate 
in Nicolaou’s total synthesis of Colombiasin A.[7c] 
 
We studied these effects on a set of unique DA reactions available 
from the Reaxys repository for which different outcomes were 
possible (see SI, Sections S1-S3). This set comprised 6,355 
reactions and divided into three partly overlapping subsets: 3,080 
reactions in which two distinct regioisomers could form, 1,088 with 
possible site-selectivity, and 2,943 with diastereoselective outcomes. 
Classifiers were constructed for each set separately to reflect 
different expected importance of electronic vs. steric effects in each 
class. If more than one product was reported (in less than 400 cases 
in the case of the diastereoselectivity problem), only the major one 
was considered. Furthermore, we did not consider intramolecular 
DA reactions (additional 1164 examples) since their regiochemical 
outcomes are enforced by the geometry of the molecule, evading 
parametrization based on substituent effects alone.  
 Regioselectivity. We start our discussion with the prediction of 
major regioisomers by QM methods against which we will 
subsequently benchmark ML approaches. We followed a well-
established way of understanding chemical reactivity in terms of 
reactivity indices.[8a] First, for all dienes and dienophiles in the 
reaction dataset, geometry was optimized using B3LYP/6-31G* 
method and basis set (all calculations were performed with 
Gaussian09). Next, to derive the so-called Parr functions (which are 
modern and improved versions of Fukui functions[8]), wave 
functions for neutral, cationic-radical and anionic-radical species of 
each diene/dienophile were calculated using B3LYP functional 
(open-shell for radicals) and 6-31+G** basis set (with diffusive 
functions on heavy atoms to better describe the third- and fourth-
row elements). Parr indices (reflecting nucleophilicity or 
electrophilicity of each atom) were then derived from Parr functions 
by means of NBO population analysis. Finally, for each possible 
regioisomer of the DA reaction, the sum of squares of the 
differences between Parr indices of reacting atoms was calculated. 
The major isomer predicted to form was the one for which this sum 
was smaller. The accuracy of this prediction was 82%, which is 
close to 82.8% obtained in some previous works using Fukui 
functions (albeit for a much smaller set of 64 simple DA 
reactions[6b]). We note that calculations with different basis sets did 
not improve the accuracy perceptibly (see SI, Section S9).  

 
Figure 2. Performance of various ML approaches in predicting major 
regioisomers. Labels on the horizontal axis at the bottom are common 
to both graphs and specify the type of descriptors used. Prefix “R_” 
denotes ECFP4s of the reaction cores rather than substrate/product 
molecules whereas prefix “S_” means that each substituent on the 
diene/dienophile was described by ECFP4s. The ML method used is 
specified in parentheses (NN = 300x2 neural network; RF = 100-tree 
random forest). a) Results obtained for the full set of 3080 
regioselective reactions. Blue bar = QM based on Parr functions, 
Green = NN or RF classifiers based on substrates and products but 
with no reaction core specified; Light purple = classifiers supplied with 
the information about reaction products. Dotted horizontal lines 
correspond to the accuracy of RF with substituents assigned 0-1 
values or random numbers (see main text). b) Performance of NN 
and RF methods upon moving one or two classes of dienes with N-
containing substituents (E = dienamines, C = dienamides). Legend 
specifies which subclasses were placed in the test set. For numerical 
values, see SI, Table S3. 

Against these values, we compared the results of different ML 
approaches in which we provided the machine with various degrees 
of chemical “insight” by either (1) not specifying the reaction core, 
or (2) specifying the diene/dienophile reaction centers on input. 
Unless otherwise stated, all models were trained and tested with the 
so-called five-fold cross-validation (cf. SI, Section S7.1) and the 
reported accuracies are average accuracy values computed in such 
cross-validation (with standard errors < 1% in all cases studied). 

For the first class, (1), either neural networks, NNs, or 
Random Forest, RF (Figures 2 and 3) classifiers[9a] were only 
“shown” the structures of substrates and possible products (i.e., the 
correct product observed in experiment and the incorrect one that 
was not observed), each represented/vectorized by various types of 
features available in RDKit[9b] (ECFP4,[9c] MACCS, or RDKit 
fingerprints, or RdKit’s 196 molecular descriptors; see SI, Section 
1.2 for further details). The highest prediction accuracy for a NN 
(with two 300-neuron layers with RELU activation function, 
connected to a single sigmoid output neuron, and denoted 300x2 
NN; each layer with 0.3 dropout) trained on ECFP4 descriptors was 
75.9% and did not improve significantly with the increase in the 
number of layers. For RF classifiers (100 trees), the accuracy varied 
between 74.1% for MACCS keys and 84.8% for the RDKit 
fingerprints. We also tested the performance of Jin’s deep NN 
(DNN) based on Weisfeiler-Lehman architecture trained on 409,035 
reactions (in vast majority, not Diels-Alder) from patents to 
recognize the reactivities of different types of atoms or bonds and 
thus predict outcomes of new reactions. [10a] Here, we wished to 
probe the much advertised ability of DNNs to perform the so-called 
transfer learning [10b]

 – that is, to train on one set of problems 
(general patent reactions) but gain knowledge to solve another 
problem not much “seen” during training (regioselective outcomes 
of DA). As it turned out, the DNN performed very poorly (0.5% 
correct DA outcomes within the network’s top-five predictions for 
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each reaction; see Figure S14) We then retrained the DNN on the 
DA examples – it offered 80.7% accuracy in predicting the major 
regioisomer being in its top five products, not significantly different 
from simpler NN architectures discussed above (for further 
discussion, see SI, Section S8). Such rather unimpressive results – 
summarized by green bars in Figure 2a – are important in so far as 
they suggest that learning nuances of chemical reactivity without 
knowing key reaction details or by training on chemically unrelated 
examples is problematic.  

With this hindsight, we focused our attention on various 
representations that specify the reaction core and quantify the effects 
of surrounding substituents (light-violet bars in Figure 2a). One 
such representation was based on the commonly used[3a,d] 
subtraction of ECFP4 fingerprints of the substrates from the 
fingerprint of the product. When such “reaction fingerprints”[11] 
were used to train a 300x2 (or other) NNs, the best accuracy 
achieved was 90.5%. A RF classifier trained on the same 
representation had 90.9% accuracy. Furthermore, when separate 
ECFP4 fingerprints were assigned to each substituent on the diene 
and dienophile, the accuracies increased to 93.1% for 300x2 NN and 
92.3% for RF.   

A conceptually different representation (cf. SI, Section S4) 
was based not on fingerprints but on the combination of 
substituent’s Hammett constants (para Hammett constants 
characterizing 306 substituents and taken from previously reported 
experimental studies[5a,b]) reflecting their propensities to 
donate/withdraw electrons, and the so-called TSEI indices[5c] 
capturing substituents’ bulkiness.  With this “stereoelectronic” 
representation, the 300x2 NN gave correct answer in 90% of cases 
whereas RF, in 93.6%. We note that inclusion of both electronic 
(Hammett) and steric (TSEI) information was important – with the 
latter omitted, the accuracy dropped to 82% for the NN and 84% for 
RF. 

At this point it might appear that representations based on 
reaction (or substituent) fingerprints and on Hammett-TSEI 
descriptors are equally effective. However, the latter – capturing 
stereoelectronic effects and not only bond-connectivity and atom 
types – enable accurate predictions about classes of compounds not 
“seen” during training. To show this, we moved from the training set 
to the test set reactions involving dienes substituted with certain N-
containing groups: dienamines (118 reactions, denoted in Figure 2b 
as E), dienamides (295 reactions, C), and both of these classes (413, 
reactions, E,C). When the RF or NN classifiers using reaction 
fingerprints or substituent fingerprints were trained on the curtailed 
training sets (Figure 2b and also SI, Section 7.2), their prediction 
accuracies decreased perceptibly, whereas the performance of 
Hammett-TSEI-based RF classifier was much less affected by such 
repartitioning of the dataset – we verified by the binomial test that 
the RF classifier using Hammett and TSEI features has higher 
expected accuracy than most other classifiers (with exception of set 
E in some representations; see SI, Section 7.5) at the confidence 
level of 99.9%. This result may indicate that the classifier was able 
to place the “newly seen” Hammett and TSEI values correctly on the 
electronegativity and bulkiness scales it learned during training.   

To further test whether chemically-meaningful descriptors are 
indeed important, we considered toy representations in which (i) all 
non-hydrogen substituents were assigned a value of 1, while 
hydrogens a value of 0; or (ii) different substituents were assigned 
different but arbitrary (i.e., chemically meaningless) values. The RF 
accuracy for the former was, as could be expected, rather low, 74%. 
Surprisingly, however, simply assigning random numbers to 
substituents offered 83% accuracy (±4% depending on the set of 
random numbers) – that is, commensurate with the predictions of 
the Hammett constants alone (84%) and indicating that on this 
particular dataset of reactions, the classifier managed to learn some 
relationships between arbitrarily but still uniquely-labelled 
substituents. However, when the number of such “random” 
descriptors was increased (to substitute for both Hammett and TSEI 

descriptors), the accuracy was not improved (85%) and never 
matched that of the combined Hammett-TSEI set (93.4%); this was 
also the case for the predictions of diastereoselective outcomes and, 
especially, site-selectivity, where the combined Hammett-TSEI set 
was 10% better than the same number of “random” descriptors (91% 
vs. 81%; for all comparisons, see SI, Section S6). Overall, arbitrary 
representations can learn to recognize some substituent patterns, but 
not as well as those based on physically realistic features. 

 

Figure 3. Training of a Random Forest, RF, classifier based on 
Hammett constants to predict major regioisomers. a) A “toy” training 
set of only six DA reactions in which the reactants can have only one 
substituent. In the product, these substituents can be oriented “ortho” 
(pink, reactions #2,5,6) or “para” (blue, reactions #1,3,4) to each 
other. For a general case of multiple substituents, see SI, Section S4. 
Numbers placed outside the red and green circles correspond to the 
Hammett constant of a given substituent; hydrogen substituents are 
assigned zero values (not shown).  b) Samples (here, just three, in 
real analyses, 100) of the same numbers of reactions as in the 
training set but allowing for repetitions are drawn from the training set 
at random. For every sample, one decision tree is created 
independently.  c) Each pair of substrates is described by a set of 
features (here, Hammett for substituents in positions R1, R2 and R3, 
as well as their combinations such as R1*R3 and R2*R3). d) The 
algorithm randomly selects a subset of features and threshold values 
are optimized to split the dataset into subsets/”leafs” as cleanly as 
possible (see [9a]). Here, the R1 ≤ -0.075 feature/threshold are 
desirable because one of the subsets (5,5,6) is “pure” – that is, it 
consists of only reactions giving the “ortho” product. e) Feature 
selection and leaf splitting are repeated for each tree until all leafs are 
pure. At this point, the classifier is trained and when it encounters a 
new DA reaction, each tree makes its own prediction and the majority 
vote of all trees is ultimately taken (SI, Section S5).  

Site- and diastereoselectivity. We approached these two sub-
problems using Hammett/TSEI RF classifiers which, as we have 
seen, have proven the most accurate and robust in the comparative 
regioselectivity tests. Prediction of the major reaction site was a 
straightforward extension since the same vectors of Hammett/TSEI 
features as before were assigned to each diene/dienophile site. The 
difference was that all possible products were created (e.g., four if 
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two dienes and two dienophiles were present) and the RF was 
trained to choose from them, by a series of pairwise comparisons, 
the one observed experimentally. The classifier thus trained was 
91.3% accurate. We note that the accuracy was not markedly 
decreased if only Hammett constants were used but was 
significantly lower with only TSEI features used for training. 
Interestingly, this theoretically-predicted importance of electronic 
effects resonates with a common experimental approach to 
designing a site-selective DA reactions by adjusting the electronic 
properties of the desired diene and dienophile sites[4a,12].  
 The situation was slightly more complicated for the prediction 
of major diastereoisomers (i.e., the choice between two possible 
stereoisomeric classes, Figure 4a). In this case, we capitalized on 
the well-defined mutual orientation of the reaction substrates and 
encoded/vectorized it by the order of features describing the diene 
and the dienophile parts in the forming ring (Figures 4b,c). With 
such vectorization and the Hammett/TSEI values assigned to the 
substituents, the RF classifier was 89.2% correct (87.2% for 
Hammett features alone and 87.5% for only TSEI). We note that 
although the conventional ECFP4 descriptors can be also be 
supplemented with some degree of stereochemical information (R/S 
stereochemical flags, see documentation of RDKit Morgan 
fingerprints in ref [9b]), their performance in the current problem was 
visibly worse, with accuracy below 80% irrespective of whether 
such descriptors were used to vectorize entire products/substrates, or 
whether they were used as reaction fingerprints.  

The last result reiterates the main message of this paper – 
namely, that ML can be useful in predicting outcomes of non-trivial 
organic reactions and can generalize to “unseen” classes of 
substrates when (i) descriptors carrying physically relevant 
information are applied, and (ii) when the machine is provided with 
appropriately vectorized information about the reaction core and 
important substituents. With these two conditions met, the 
methodology we described should be extendable to other reaction 
classes for which sufficient numbers of training examples are 
available.  

 

Figure 4. Prediction of major diastereoisomers and vectorization of 
the substituents at the reaction core. a) Example of a DA reaction with 
possible syn and anti products, of which the latter (colored blue) is 
obtained experimentally. b) Substituent-based, stereochemically-
aware vectorization of product syn. Following the counterclockwise 
numbering of the atoms on the product’s cyclohexene ring, 
substituents are sequentially added into the vector. Within each block, 
the substituent pointing below the plane of the ring is added first. 
Each substituent is then assigned specific values of the Hammett and 
TSEI descriptors. c) To avoid ambiguity of the direction in which 
substituents are traversed, the ring is rotated 180o around the axis 
bisecting the 1-2 double bond. After substituents are numbered and 
the descriptor values assigned, the newly created vector is 
concatenated with the one from (b) to give the ultimate vector 
representation of the reaction’s diastereoselectivity. Desired 
classifiers are then trained on this “composite” representation (see SI, 
Section S4). 
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