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Breakdown of diffusivity–entropy scaling in colloidal
glass-forming liquids
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Glass is a liquid that has lost its ability to flow. Why this particular substance undergoes such

a dramatic kinetic slowdown yet remains barely distinguishable in structure from its fluid

state upon cooling constitutes the central question of glass transition physics. Here, we

investigate the pathway of kinetic slowdown in glass-forming liquids that consist of mono-

layers of ellipsoidal or binary spherical colloids. In contrast to rotational motion, the dynamics

of the translational motion begin to violently slow down at considerably low area fractions

(ϕT). At ϕT, anomalous translation–rotation coupling is enhanced and the topography of the

free energy landscape become rugged. Based on the positive correlation between ϕT and

fragility, the measurement of ϕT offers a novel method for predicting glassy dynamics, cir-

cumventing the prohibitive increase in equilibrium times required in high-density regions. Our

results highlight the role that thermodynamical entropy plays in glass transitions.
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As a prevalent state of matter, glasses are ubiquitous in
nature. Various types of glass are manufactured at
industrial scales and possess particularly desirable

mechanical or optical properties that are useful in a wide variety
of applications in daily life. However, achieving a consistent
microscopic understanding of the behaviours of glass remains a
challenge for both physicists and material scientists1. One central
problem in glass science is kinetic slowdown, which is the process
through which a liquid loses its ability to flow upon cooling. Why
this particular substance undergoes such dramatic slowdown
kinetically but does not appear to undergo structural changes
during the glass transition has been extensively investigated2.

The theories of random first order transition3 and dynamical
facilitation4 have achieved great success in the study of glass
transitions. For example, the heterogeneous dynamics and
structures predicted by these theories have been repeatedly con-
firmed in both experiments5–8 and simulations9–11. In an alter-
native approach, the process of kinetic slowdown was determined
to be directly related to the thermodynamical quantities of
enthalpy and entropy12, which were eventually determined by the
topography of the free energy landscape (FEL)13; however,
experimental tests of FEL in glassy systems have been rare14.

Despite an abundance of theories, however, knowledge gaps
remain and preclude a thorough understanding of glassy
dynamics which hinders a broader application of them. One
interesting research topic is translation–rotation coupling in
molecular liquid and how such a coupling influences glassy
behaviours. It was predicted by mode coupling theory (MCT) that
the sequence of glass transitions in translational and rotational
degrees of freedom depended on the shape factor of the non-
spherical motif15,16. However, how the collision of neighbouring
non-spherical motifs within a small distance influences glassy
dynamics involving collective motion on a much larger length
scale has remained poorly understood. Also, experiments have yet
to establish a clear link between kinetics and thermodynamics in
glass transition17.

Excess entropy (sex), which is a measure of inherent structures
within a basin13, has been served as an excellent descriptor of the
FEL topography, and therefore has been used to describe the
kinetic slowdown of glass-forming liquids18. Additionally, the
frequency of collisions, which defines the rate at which the system
relaxes, is proportional to the number of accessible
configurations19,20. This argument directly leads to a scaling law
between the long-time diffusion constant and excess entropy
(D – sex scaling) as D � e�αsex . Although the D –sex scaling for
rotational degree of freedom (superscript ‘θ’) has remained
unexplored, the D � e�αsex relation in the translational degree of
freedom (superscript ‘T’ in this paper) has been verified in
atomic21, granular22 and colloidal liquids23–25. More critically,
this exponential scaling (D � e�αsex )19,26 has been proverbially
used as a tool for discovering liquid properties such as the
anomalous behaviours of water27–29, atom diffusivity in porous
materials30, the confinement effect in fluids31, and the relaxation
of glass-forming liquids32 and quasicrystals19; it has become a
standard feature of a liquid. However, this D – sex scaling has only
been verified for liquids at packing fractions considerably higher
than the melting point (ϕm) or glass transition point (ϕg). The
term ϕ is equivalent to the inverse of temperature in a molecular
system— higher ϕ in colloids means a lower effective tempera-
ture. When approaching ϕg, a glass-forming liquid becomes dense
and dynamically heterogeneous33. Theoretically, the DT– sT

scaling takes a more precipitous form as D � e
α

Tsex near ϕg12,
where the superscript ‘T’ represents the translational degree of
freedom. Consequently, it is reasonable to expect the D–sex

scaling to break down at some point upon cooling, at least for

glass-forming liquids. Because the D–sex scaling is a joint product
of thermodynamical entropy and the dynamic diffusion coeffi-
cient, it can be usefully employed to study the role that ther-
modynamics plays in the kinetic slowdown during glass
transitions18.

Colloids have served as an outstanding model for investigating
glass transitions34. Micro–particles dispersed in water undergo
Brownian motion, which perfectly simulates the diffusion of
atoms or molecules35. The motion of each particle can be
recorded and digitalised using optical video microscopy36. Con-
sequently, kinetic information with single-particle resolution can
always be obtained using these platforms. The typical relaxation
time of a colloidal glass is seconds to hours depending on ϕ6,
which makes the systematic testing of glassy dynamics possible.
Numerous theoretical models of glass transitions have been
evaluated in colloidal systems, namely dynamical heterogeneity
(DH)5–7, the point-to-set approach37 and dynamical
facilitation38.

In this study, we systematically investigated the kinetic slow-
down of two crystallising and eight glass-forming liquids by
measuring their D–sex scaling. The colloidal samples consisted of
ellipsoidal (having aspect ratio p= 1.26, 1.60, 1.84, 2.68, 3.72,
5.00, and 7.06, see Supplementary Fig. 1) or binary spherical
particles. We found that the D – sex scaling broke down for glass-
forming liquids at unexpectedly low area fractions. Accompany-
ing the breakdown, we observed enhanced translation–rotation
coupling and a topography change of the FEL. Further analysis of
relaxation time indicated a positive correlation between the fra-
gility of a liquid and the area fraction (ϕT) at which the D– sex

scaling broke down. Our experiments shed light on the study of
molecular glasses and emphasised the crucial role that thermo-
dynamical entropy plays in the kinetic slowdown during glass
transition.

Results
Kinetic pathways and D–sex scaling. As the area fraction
increases, a liquid (Supplementary Fig. 2a) can undergo one of
two kinetic pathways. One path (c-path) entails crystallising into
an ordered solid (Supplementary Fig. 2b) through a thermo-
dynamic phase transition. When crystallisation of a system is
suppressed either through rapid cooling or through incompatible
motif symmetry, however the system’s glass transition intervenes2

(Supplementary Fig. 2c). The glass transition is abbreviated as ‘g-
path’ in this paper. In our experiments, spheres were able to
follow c-path as well as ellipsoids with p= 1.26; however, binary
and other ellipsoids tended to follow the g-path. To more clearly
express our experimental system in the language of glass transi-
tion, we extracted ϕg by calculating the intermediate scattering
function Fs(q, t)= hPN

j¼1 e
iq�ðxjðtÞ�xj jð0ÞÞi=N (Fig. 1a). Here, xj(t)

represents the position of ellipsoid j at time t, q is the scattering
vector, N is the total number of particles, and 〈〉 denotes the
ensemble average. We chose q= qm corresponding to the first
peak in the structure factor at high density. The relaxation time
(τα) was then defined as the time at which Fs(q, t) had decayed to
1/e (dotted line in Fig. 1a). Subsequently, we plotted 1/τα as a
function of ϕ and then extrapolated 1/τα to zero (Fig. 1b) with the
equation 1/τα= (ϕg− ϕ)γ. The relaxation time, according to this
formula, must diverge at ϕg, which serves as the glass transition
point of the system. Our fitted ϕg (Fig. 1c) decreased with the
aspect ratio, and the values were consistent with those reported in
other colloidal experiments6,39.

In colloidal experiments, determining the full value of excess
entropy is difficult. The two-body part of excess entropy (sex2 ) has
been reported to contribute more than 70% of sex and to have a
linear relationship with sex, identified using simulations32,40.
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Thus, we abbreviate sex2 as s2 in brief to identify a specific quantity
to test the slowdown kinetics. The two-body excess entropies in
the translational and rotational degrees of freedom were evaluated
according to the following equations6,41:

sT2 ¼ �πkBρ
Z þ1

0
½gðrÞlngðrÞ � gðrÞ þ 1�rdr ð1Þ

sθ2 ¼ � 1
2
kBρ

Z þ1

0
gðrÞrdr

Z 2π

0
gðθjrÞln½gðθjrÞ�dθ ð2Þ

where kB is the Boltzmann constant, ρ is the number density, g(r)
is the radial distribution, and g(θ|r) is the orientation distribution
function of the angular difference between the long axes at some
distance r. The long-time diffusion coefficient (D) used in the rest
of this manuscript was the slope of the ‘out-of-cage’ part of the
mean square displacement (Supplementary Fig. 3) obtained
through linear fitting.

Regarding the rotational degree of freedom, the Dθ � sθ2 scaling
held for all ellipsoids (Fig. 2a) when ϕ ranged nearly all the way
up to the orientational glass transition point6, after which the
long-time diffusion coefficient vanished. The Dθ � sθ2 data for
rotational motion were adequately fitted by the exponential decay
Dθ � e�αsθ2 . It is noteworthy that a sudden jump of the fitted
exponent α occurred between p= 3.27 and p= 5.00. Because α
reflects how fast the kinetics of the system slows down after losing
the same number of available configurations, lower α value for
small p ellipsoids implied milder and probably continuously
increasing non-ergodicity as a function of ϕ15,16. This finding
coincided well with previous molecular dynamics simulations and
thus provided experimental verification of the proposed weak
steric hindrance scenario for the slightly elongated particles15,16.

The situation for the translational degree of freedom was
qualitatively different. We found that for all liquids that follow
the c-path (spheres and p= 1.26 ellipsoids), the DT � sT2 scaling
in the translation was valid (Fig. 2c, d) for area fractions ranging
from 0.05 to 0.70. However, the DT � sT2 scaling broke down for
g-path liquids (binary and all ellipsoids) at surprisingly low area
fractions (ϕT) (Fig. 2) relative to ϕg (Fig. 1c). When ϕ was higher
than ϕT, the kinetics of glass-forming liquids slowed down much
more rapidly than the kinetics of the liquids that crystallised.
Interestingly, for p= 1.26 ellipsoids, we discerned a bifurcated
pattern in the DT � sT2 plot (Fig. 2d). Raw images depict that the
p= 1.26 ellipsoid crystallised (right inset of Fig. 2d) or formed
glass (left inset of Fig. 2d) depending on the wall separation of the
samples (Supplementary Fig. 2 and Supplementary Note 1).
Consistently, the samples following the c-path obeyed the normal
DT � sT2 scaling whereas the samples following the g-path

deviated from the exponential fitting (dashed lines in Fig. 2d).
On the basis of these observations, we concluded that the
breakdown of DT � sT2 scaling was caused by glassy effects.

There existed a turning point, which was defined as the first
point in the DT � sT2 plots (Fig. 2c, d) that deviated from the
exponential fitting (dashed line in Fig. 2c–e); this point thus
separated the smooth and rapid slowdown processes in the
translational degree of freedom for each g-path liquid. The raw
images that correspond to the turning points and the area
fractions (ϕT) are presented in Fig. 3. Unexpectedly, ϕT covered a
wide ϕ range from 0.13 to 0.72 for various g-path liquids. For
binary (Fig. 3a and Supplementary Figs. 6, 8a and 9a) and other
ellipsoids6,7 (Fig. 3c–h), ϕT was considerably lower than the onset
of DH (Supplementary Figs. 6–9), whereas for the p= 1.26
ellipsoid (Fig. 3b), ϕT was higher than the area fraction at which
DH occurs7 (Fig. 3b and Supplementary Figs. 5, 8b and 9b).
Therefore, any turning in the DT � sT2 scaling should have been
irrelevant to DH (see more discussions in Supplementary Note 2).
The properties, such as ϕT, of the transient region between the
liquid and glass states have usually been overlooked by current
dynamic theories in part because the density of a system in this
region is apparently too low to allow any DH to occur. Instead of
DH, three major features of the system at ϕT are reported in the
following sections.

Abnormal translational–rotational cross-correlation at ϕT. We
observed that the abnormal coupling between translation and
rotation was significantly enhanced at ϕT. For systems composed
of anisotropic-shaped particles such as ellipsoids6 or dumbbells42,
the translational and rotational motions were no longer inde-
pendent whenever a collision occurred. Such systems are usually
also effective glass formers. However, the relationship between ϕ
and collision frequency, which can be calculated from the height
of the first peak of the radial distribution function g(r)19,20, can be
complicated if a system takes its g-path. For a strong glass former
in particular, the shape of g(r) minimally changes with increasing
ϕ (Supplementary Fig. 18c)43. Therefore, how the enhanced
translational–rotational correlation affects the kinetic pathway
and eventually alters the DT � sT2 scaling remains unexplored.

To characterise the translation–rotation coupling, we defined
the cross-correlation function for ellipsoidal particles as Cxyθ(t)=
2〈ΔxΔy〉〈sin2θ〉/t, where Δx and Δy are displacements in time
period t in the x and y directions, respectively; θ is the angle of an
ellipsoid (in the lab frame) at time t, and the angle brackets
represent the ensemble average. For a single ellipsoid diffusing in
water, the friction coefficient parallel to the major axis is
invariably smaller than that which is perpendicular to the major
axis, resulting in positive translation–rotation coupling in the lab
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frame44. If an ellipsoid particle is in a crowded environment such
as a suspension of high-density active bacteria, however, negative
cross-correlation may be evident45. In our experiments, we
observed four types of cross-correlation in total (Fig. 4a). In

addition to the normal case for a single Brownian ellipsoid (the
black curve in Fig. 4a), the other three types were abnormal
because of negative correlations during certain time periods. The
green dash-dotted curve exhibiting only a negative part was
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caused by non-central collisions between only two particles,
which solely enhanced motion in the direction perpendicular to
the long axis. The other two curves exhibiting both positive and
negative parts likely involved multi-particle collision events that
caused opposite effects the motion of the particles at various time
scales.

We counted the number of fractions of particles that exhibited
abnormal cross-correlation for each ϕ and for all seven types of
ellipsoids and determined that the proportion of abnormal
particles started to increase considerably at certain area fractions
ϕi (Fig. 4b). In addition, ϕi coincided favourably with ϕT within
the experimental accuracy (Fig. 4c). As previously discussed, the
negative Cxyθ(t) was caused by abnormally slow diffusion along
the major axis, which is strictly prohibited for a single Brownian
ellipsoid. As ϕ increased, the abnormal diffusion could thus only
have been generated by increasingly frequent collisions among
particles. Thus, the booming ratio of particles with abnormal
cross-correlation at ϕi was an effective indicator of enhanced
collision frequency within the system. In other words, ϕi was also
the point at which particles started to collide frequently. Thus, it
seemed that the observed abnormal cross-correlation strongly
indicated that the microscopic origin causing the breakdown of
DT � sT2 scaling in ellipsoidal systems could be deeply rooted in
the translation-rotation coupling caused by noncentral collisions
among particles.

Nonetheless, if the turning in DT � sT2 scaling was solely caused
by translation–rotation coupling, it should have commonly
existed for both degrees of freedom, but that was not what was
observed in the experiments (Fig. 2a). The absence of turning in
the rotational degree of freedom, as well as the existence of
turning in binary systems creates ambiguity with respect to
the role played by collision in the turning. A new theoretical
definition of pairwise entropy that combines the translational
and rotational motions may offer superior insight into the role
played by their coupling. In addition, it is questionable whether
the short-timescaled (approximately 100 s in Fig. 4a) cross-
correlation (or collisions) would be able to influence the
relaxation of glasses at much longer timescales (>1000 s).
Therefore, the roles that noncentral collisions and
translation–rotation coupling play in the kinetic slowdown of
ellipsoidal systems remain undetermined and warrant further
investigation.

Rugged FEL topography near ϕT. Another feature of the turning
is the rugged FEL topography near ϕT. For a system with N particles,
the FEL is a 6N hypersurface, which is hardly calculable when N is
large46. In practice, it was proven by simulation that the topography
of FEL can be approximately depicted by average particle

mobility47–49. Herein, we express the mobility in translational
motion as Δu(t)= 1

N

� � PN
i¼1 ½uiðt þ τα=2Þ � uiðt � τα=2Þ�, where

N is the particle number, τα is the relaxation time (defined in
Fig. 1a), and ui is particle i’s displacement at a given time47–49.
Simulations have suggested that over a much broader ϕ range than
the range in which MCT takes effect, the relaxation kinetics are
mainly sensitive to the topography of the FEL46,48–50, implying that
inherent structure is a useful tool for predicting glassy
kinetics when the density of the system is low. In Fig. 5a–c we dis-
play the time dependence of Δu(t) for the p= 5.00 ellipsoid
under three typical area fractions. Compared with the FEL at low
density (Fig. 5a), the topography of the FEL in translational
motion became rugged in the vicinity of ϕT (Fig. 5b) and thereafter
(Fig. 5c). By contrast, the topography of the FEL in rotational
motion, Δθ(t)= 1

N

� � PN
i¼1 ½θiðt þ τα=2Þ � θiðt � τα=2Þ�, remained

smooth over the whole ϕ range (Fig. 5d–f), agreeing with the
absence of a turning in the Dθ � sθ2 plot (Fig. 2a). Without excep-
tion, the standard binary system exhibited rugged FEL near ϕT
(Fig. 5g–i). More quantitative analysis of FEL was conducted by
calculating the probability distribution of the mobility and its half
width in Supplementary Note 3 (Supplementary Fig. 17). A sudden
jump of the half-width for translational motion occurred at ϕT and a
similar jump for rotational motion occurred much later (Supple-
mentary Fig. 17c). This measurement unambiguously suggested that
ellipsoid particles were still free to rotate at the ϕ when translational
motion began to be caged, in accordance with caging sequence
predicted by simulation and MCT15,16. The evolution of the FEL
topographies of all other g-path liquids exhibited tendencies (Sup-
plementary Figs. 11–16) similar to those depicts in Fig. 5 and
Supplementary Fig. 17. These observations confirmed the major role
that inherent structures play in D– s2 scaling.

However, the fact that both rugged FEL and DT � sT2 turning
(i.e. ϕT) occurred much earlier than DH appeared to support the
simulation results that rugged FEL occurred much earlier than
the transition point predicted by MCT50. This ‘overlook’ by MCT
indicated that the turning we observed in the low-density region
probably deeply involved in thermodynamic or dynamical
fluctuations rather than mean field properties. Confirming the
causal role FEL plays in the breakdown of DT � sT2 scaling
required a more direct means of accessing inherent structures in
phase space than the current analysis using mobility
representation.

Near ϕT, some adjacent inherent structures formed basins on
larger time scales (Fig. 5b, c), during which the system was
trapped within a small number of inherent structures. The
presence of this substructure in the FEL reflected the highly
nontrivial nature of the entire hypersurface that resulted from
many-body interactions51. When ϕ was high, the presence of
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valleys dramatically slowed down the kinetics and was thus the
limiting step for full structural relaxation. During residence in a
basin, the configuration fluctuated only slightly and thus
corresponded to a long-lived metastable state that abrogated the
ergodicity of the system. High activation energy was required for
the system to relax from one basin to another52. Increasingly few
configurations were available after ϕT. Consequently, when ϕ
increased, the loss of configurations (or entropy, sT2 ) caused the
kinetics to more violently slow down (DT) compared with the
situation before ϕT. When ϕ was low, however, the residence
probability in the configuration space was no longer dominated
by the regions around the inherent structures; therefore, no
stationary inhomogeneous density field could be defined over
periods longer than microscopic times52 and the kinetics became
irrelevant to the topography of the FEL13.

Positive correlation between fragility and ϕT. A crucial feature
of ϕT is its connection with fragility (m), which is another
quantity that reflects the inherent character of the FEL2. To
determine the fragility of a liquid, we produced Arrhenius plots of
relaxation time as a function of the area fraction scaled by values
of ϕg (Fig. 6a). Fragility m was then defined as the derivative of
the scaled relaxation time as a function of the area fraction scaled

by ϕg as m=
∂ τα=τ

0
αð Þ

∂ ϕ=ϕgð Þ
����
ϕ¼ϕg

53.

As is evident in Fig. 6b, both m and ϕT decreased with the aspect
ratio. Without exception, the data from the binary system
conformed to this tendency. Thus the striking differences between
fragile and strong liquids can be directly evaluated using the DT �
sT2 scaling (Fig. 2c–e). The kinetic slowdown of a strong liquid
begins to deviate from the form D � e�αsex at a much lower ϕT than
a fragile liquid. A molecular dynamics (MD) simulation demon-
strated that when ϕ increased, D decayed faster for strong liquids
than for fragile liquids54. Our observations provided clear
experimental support to this finding (Fig. 2e). The difference
between strong and fragile liquids can also be evaluated from the
structural reaction of a liquid towards cooling. Typically, a stronger

liquid exhibits less structural change within the same temperature
range55. Supplementary Fig. 18 illustrates that for a similar range of
diffusion coefficients, decreasing from 1 to 10−3, the first peak of
the radial distribution function (g(r)) for fragile liquids altered
correspondingly (Supplementary Fig. 18a, b, d) but hardly changed
for strong liquids (Supplementary Fig. 18c, d). Evidence was also
apparent that the first peak of g(r) saturated at ϕT.

The unambiguously positive correlation between ϕT and m
(Fig. 6b) highlighted the crucial role of ϕT in glass transitions. We
determined that a g-path liquid tends to exhibit a continuous
transformation from fast relaxation in the low ϕ region to slow
relaxation in the high ϕ region (Fig. 6a). The transformation
usually occurs at lower ϕ regions for strong liquids than for fragile
liquids. This explains why ϕT was lower for ellipsoids with larger
p-values, or equivalently, stronger liquids in our experiments
(Figs. 2b–d and 6b). In addition, because a liquid’s relaxation is
characterised by m in the thermodynamic picture, the relaxation
of a g-path liquid at a high ϕ can be precisely predicted by
measuring its DT � sT2 relation and identifying ϕT. Unlike ϕg, ϕT
usually lies well within the liquid region. Therefore, ϕT should be
useful for probing glassy behaviours that are typical of much
higher ϕ while circumventing the prohibitive increase in
equilibration times.

The slowdown kinetics after ϕT were also directly related to m
and could be understood from the visualisations of FEL13, in
which the variation between behaviours of the strong and fragile
liquids was tracked back to topographic differences in the FEL.
The extremes of strong glass formers (p= 3.72,5.00, and 7.06
ellipsoids in our experiments, Fig. 6a) presented a uniformly
rough topology, exhibiting little or no coherent organisation of
individual basins into large and deep craters13. The relaxation of
the system was dominated by jumps among a few isolated local
minima (basin of attraction) in a single energy-scaled FEL46,47. In
other words, the configurations in which the system could dwell
were dearth for a strong liquid. As the area fraction increased, the
local minima became deeper and the relaxation between any two
minima required overcoming an increasingly high energy barrier.
The system remained within one local minimum. Therefore, the
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loss of local minima (or entropy) upon cooling led to much faster
slowdown of the kinetics of a strong liquid (Fig. 6a), which is
reflected by the steeper DT � sT2 scaling after ϕT in Fig. 2e.

Discussion
In summary, we have reported the systematic experimental
study of kinetic slowdown of colloidal glass-forming liquids
from the perspective of thermodynamics56,57. We found the
DT � sT2 scaling for all g-path liquids turned at fairly low area
fractions (ϕT), which defined a new ‘transition’ point that had
not been addressed previously. After ϕT, the slowdown process
was greatly accelerated. This finding demonstrates the crucial
role thermodynamic entropy plays in kinetic slowdown.
In addition, profound interactions were evident between
kinetic slowdown, translation–rotation coupling, FEL topo-
graphy, and fragility. We expect results similar to ours to be
observed in other systems, both in 2D and 3D where crystal-
lisation is depressed such as polydispersed colloidal systems58,
granular systems22, emulsion droplet systems59 and even cel-
lular systems60, because the general rule that controlled the
slowdown of kinetics approaching the glass transition should
be the same.

The most challenging task associated with this research was
how to integrate our observations with current theoretical fra-
meworks1. Although they did not conflict with any well-
established model, most of our observations had not been
addressed by established theories. The turning point (ϕT) pro-
posed in this article had been proven to be irrelevant with the
onset of DH (Fig. 3 and Supplementary Figs. 5–9) and was too
low to attract any attention in the previous theories1. At ϕT, the
relaxation of the system was dominated by few-particle dynamics
without diverging static or dynamical length scales. The turning
itself was therefore not related to the collective glassy dynamics.
Meanwhile, our findings strongly indicate that behaviours of the
low-density liquids can foreshadow the kinetic paths and
relaxation phenomena of their high-density counterparts, namely,
glasses. Because previous simulations demonstrated that ϕg also
scaled with the jamming packing fraction (ϕJ)61,62 and we found
that ϕg, as a function of ϕT, could be fitted by a stretched expo-
nential (Supplementary Fig. 19 and Supplementary Note 4), it
would seem reasonable to expect that the turning also has some
relation to the jamming transition. Therefore, the connection
between behaviours at various time and length scales—liquid,
glass and jammed states—remains an interesting open question.
To investigate this, theories such as the self-consistent generalised
Langevin equation63 may play a role because the multi-length
scale needs to be taken into consideration. Moreover, since ϕT is
essentially a ‘blended’ quantity that is determined by the joint

effect of entropy and the diffusion coefficient, it would be
worthwhile to investigate interactions between thermodynamics
and kinetics in theory.

The reason why the FEL topographies in various degrees of
freedom are so distinct has yet to be fully explored. Our data
(Fig. 5a–f and Supplementary Figs. 12–16) demonstrate that
the FEL in translational motions became rugged in advance of
rotational motions, which suggested the ellipsoids were still
free to rotate when they were already non-ergodic in transla-
tion. This caging sequence support the previous results of MD
simulations15,16 where two glass transition lines were identified
in the dynamical phase diagram. In addition, the jump in the
decay exponent of Dθ � sθ2 in Fig. 2b, as well as the sharp
decrease of ϕT (Fig. 6b) as a function of p indicated qualita-
tively distinct glass transitions for small and large p ellipsoids
because of different translation–rotation couplings. It would
therefore be meaningful to undertake more quantitatively
comparative experiments and simulate data to investigate the
characteristics of strong and weak steric hindrance scenarios.
Our current experiments have paved the way for establishing a
link between random first-order transition theory and inherent
structure.

Methods
In this experiment, we used two types of colloidal glass-forming liquids that
consisted of ellipsoidal or binary spherical particles. For the ellipsoidal system, we
stretched polymethyl methacrylate (PMMA) spheres (Microparticles GmbH,
Germany) with a diameter of σ= (2.74 ± 0.04) μm into ellipsoid particles with
aspect ratios p= a/b= 1.26, 1.60, 1.84, 2.68, 3.72, 5.00, and 7.06 and polydispersity
of less than 5%. Here, a and b were the major and minor axes, respectively. For the
binary spherical system, we mixed σ= (2.08 ± 0.05) μm and 2.74 μm PMMA
spheres homogeneously with a ratio of 0.55:0.45. The particles underwent short-
ranged repulsive interaction. Both the ellipsoidal and binary spherical systems
effectively avoided crystallisation and thus served as satisfactory glass formers. The
ellipsoids with p= 1.26 sometimes formed rotator crystals6 when the wall
separation was appropriate, but they formed glass in most trails. We also used 2.74
μm PMMA mono-dispersed spheres for a control group. To optimally image and
track particle motion, we adopted a quasi–two–dimensional sample configuration
in which colloidal particles were dispersed in water between two parallel horizontal
glass walls that had a separation of less than 1.2 σ, and screened off the majority of
the hydrodynamic force between particles24. For colloids in 2D, the area fraction
ϕ= πabρ played the same role as the inverse temperature 1/T plays in molecular
systems and ρ represents the number density. Approximately 10 to 25 area frac-
tions within 0.02 ≤ ϕ ≤ 0.95 were recorded for each aspect ratio through video
microscopy. During the 2- to 4-h measurements at each ϕ, no drift, flow, or density
change were observed. The center-of-mass positions and orientations of 200–5000
ellipsoids were tracked using an image-processing algorithm36.

Data availability
The data supporting the findings of this study are available from the corresponding
authors upon reasonable request.
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