
Optical tweezers as a mathematically driven 
spatio-temporal potential generator 

JOHN A. C. ALBAY,1,4 GOVIND PANERU,2,4 HYUK KYU PAK,2,3 AND

YONGGUN JUN
1,* 

1Department of Physics, National Central University, Taoyuan, 320, Taiwan 
2Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea 
3Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, 
South Korea 
4Co-first authors with equal contribution 
*yonggun@phy.ncu.edu.tw

Abstract: The ability to create and manipulate spatio-temporal potentials is essential in the 
diverse fields of science and technology. Here, we introduce an optical feedback trap system 
based on high precision position detection and ultrafast feedback control of a Brownian 
particle in the optical tweezers to generate spatio-temporal virtual potentials of the desired 
shape in a controlled manner. As an application, we study the nonequilibrium fluctuation 
dynamics of the particle in a time-varying virtual harmonic potential and validate the Crooks 
fluctuation theorem in the highly nonequilibrium condition. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

For the past three decades, there has been significant progress in the field of stochastic and 
information thermodynamics, where general laws such as fluctuation theorems and Jarzynski 
relations applicable to nonequilibrium phenomena have been discovered [1–3]. Many of these 
nonequilibrium relations are validated experimentally, thanks to the development of new 
technologies, which facilitates trapping and manipulation of Brownian particles, such as 
optical tweezers (OT). The OT has been a powerful tool for trapping and controlling 
Brownian particles in fluid [4,5]. It can trap and locate an object with subnanometer 
resolution and is capable of probing piconewton forces. As a result, it has been successfully 
used as an experimental tool in the diverse fields of science and engineering [6,7]. It has been 
used in biophysical experiments for the purpose of the position and force spectroscopy [8,9]. 
The OT has also been used in the field of nonequilibrium and information thermodynamics to 
demonstrate the validity of various fundamental relations [10–13]. For example, varying laser 
intensity with controlled artificial thermal noise allows one to demonstrate the Brownian 
nano-heat engine [10]. Placing two traps close enough can create a double-well potential to 
study Kramers’ transition rate [12], stochastic resonance [11], and Landauer’s principle of 
information erasure [14]. However, these prior studies could not modulate the barrier height 
and the tilt of the double-well potential in a controlled manner. Hence, despite the partial 
success of the optical tweezers in the study of the stochastic and information 
thermodynamics, its application is still limited when the generation of the mathematically-
driven time-varying arbitrary shaped potential is required. 

Recently, Cohen et al. developed a feedback-based technique called anti-Brownian 
electrokinetic (ABEL) trap by applying the feedback force in the form of electrophoretic 
force, which enables trapping of a nano-sized object in solution [15,16]. The ABEL trap can 
also create the arbitrarily-shaped potential [17,18] and has been used to study the dynamics of 
a Brownian particle in a double-well potential [19–21]. However, the design and the 
implementation of the ABEL trap are quite complicated. In particular, ABEL trap requires 
micro-fabricated 2D flow channel that introduces complicated boundary effect between the 

Vol. 26, No. 23 | 12 Nov 2018 | OPTICS EXPRESS 29906 

#334542 https://doi.org/10.1364/OE.26.029906 
Journal © 2018 Received 11 Jun 2018; accepted 10 Sep 2018; published 31 Oct 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.029906&domain=pdf&date_stamp=2018-10-31


trapped particle and the wall of the flow channel. Also, due to the long delay time in feedback 
[21], the ABEL trap cannot apply ultrafast feedback control, thereby limiting its application 
in studying stochastic dynamics in highly nonequilibrium regimes. 

In this article, we propose a simple and effective technique called the optical feedback trap 
(OFT) that, with a high precision position detection and ultrafast feedback control, can create 
a time-dependent mathematically-driven effective potential of ideally any desired shape and 
strength using optical feedback force. The basic operation of the OFT follows three crucial 
steps. First, a high precision measurement of the particle position in the optical tweezers is 
acquired. Second, the feedback force necessary for the generation of the virtual potential of 
the desired shape is computed. The feedback force is finally applied to the particle in the form 
of optical force via the ultrafast modulation of the trap center. We tested the creation of the 
virtual harmonic potentials of various stiffnesses at a fixed laser intensity and found that the 
dynamics of the particle in the virtual potential is very close to the real harmonic potential. 
We also created a virtual double-well potential whose barrier height and well depths can be 
modulated in a controlled manner. As an application of the OFT, we studied the 
nonequilibrium fluctuation dynamics of a particle in virtual harmonic potential where the 
stiffness of the potential was varied linearly with time (keeping the laser power fixed) to test 
the validity of the Crooks fluctuation theorem [22] for diverse processes ranging from near 
equilibrium to very far from equilibrium. 

 

Fig. 1. Schematic drawing of the optical feedback trap. The particle position that the PSD 
acquires is sent to the FPGA which calculates the force exerting on a particle for the given 
virtual potential, converts it to the voltage, and sends it to the AOD to deflect the beam. BE: 
beam expander, DM: dichroic mirror, PSD: position sensitive device, M: mirror, AOD: 
acousto-optic deflector, FPGA: Field-programmable gate array. 

2. Experimental setup 

The schematic drawing of the OFT setup is shown in Fig. 1. A laser (Cobolt Rumba) with 
1064 nm wavelength is used for trapping the particle. The laser beam is incident on the 
acousto-optic deflector (AOD) (Gooch and Housego, AODF 4090-6) at Bragg angle, 
resulting in the maximum power output of the first-order diffracted beam. This beam is 
focused at the sample plane of an optical microscope (Olympus IX73) using a 100X oil 
immersion objective lens (Olympus, UPLFN100XO). A second laser (Thorlabs, BL976-
SAG300) with 980 nm wavelength in combination with a neutral density filter (Thorlabs, 
NDUV10B) is used for detection of the particle position. The particle position is detected by a 
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method based on the back-focal-plane interferometry [23]. Here, a condenser lens of high 
numerical aperture (NA 1.4) collects both scattered and unscattered detection laser light from 
the trapped particle and forms an interference pattern at the back focal plane of the condenser 
lens. The conjugate image of this pattern is projected onto the position-sensitive diode (PSD) 
(Pacific Silicon Sensor, DL100-7-PCBA3). The voltage signal acquired from the PSD is sent 
through a field programming gate array (FPGA) data acquisition board (National Instruments, 
NI PCIe-7851R) to convert the voltage to the real position of the particle and to determine the 
associated feedback force imposed by the virtual potential. The accuracy of the position 
measurement is about 1 nm. The FPGA board updates the tuning voltage that is needed for a 
shift of the laser beam center corresponding to above-determined feedback force. This voltage 
is applied to the AOD via the radio-frequency (RF) synthesizer driver (Gooch and Housego, 
AODR 1110FM-4) to steer the laser beam center. The particle position detection and 
application of the feedback are controlled via home-made software using LabVIEW 
programmed on the FPGA target. The trap stiffness is calibrated by two methods based on the 
equipartition theorem and the power spectrum [24]. 

Fig. 2. Illustration of the protocol of the generation of a virtual harmonic potential. (a) A 

particle is assumed to be trapped in a virtual harmonic potential ( ) 2
1 / 2

v v
U x k x=  (blue 

dashed curve) of stiffness 
v

k . (b) The PSD measures the particle position and the 

corresponding virtual restoring force 
v v

f k x= −  (blue arrow) is estimated corresponding to the 

virtual potential. (c) The OT (red arrow) exerts the real feedback force ( )
ot L

f k x x= − −  to the 

particle by shifting the potential center by the amount given by Eq. (1). Consequently, the 

particle moves as if it is in the real harmonic potential of stiffness 
v

k . 

The basic operation for the generation of a virtual harmonic potential of the desired 
stiffness is outlined in Fig. 2. Initially, one can assume that a particle is trapped in the virtual 
harmonic potential centered at 0x = , ( ) 21/ 2 ,v vU x k x=  experiences the virtual restoring

force v vf k x= − , where vk  is the stiffness of the virtual potential. Note that there is no real 

spatial potential. In order for the particle to feel itself in the potential, the optical tweezers 

exert the equal strength of physical force ( ) ( )( ) ot L df t k x t x t t= − − −    to the particle by

shifting the laser center position Lx  instantaneously by an amount 

( ) 1 ( ) ( ),v
L d d

ot

k
x t x t t x t t

k
α

 
= − − = − − 

 
(1)

where dt  is the feedback force delay time, which is defined as the time difference between 

the position measurement ( )x t  and the actual application of the feedback force ( )f t , and 

( )1 /   is v otk kα ≡ − −  the feedback gain. Consequently, the particle moves as if it is in the real 

harmonic potential of the stiffness vk . The motion of the particle in this feedback trap can be 

described by the modified overdamped Langevin equation 

[ ]( ) ( ) ( ) ( ).f
ot Lx t k x t x t tγ ξ+ − =  (2)
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Here, γ  is the Stokes drag coefficient and fξ  is the random thermal Gaussian force with 

0fξ =  and ( ) ( ') 2 ( ')f f
Bt t k T t tξ ξ γ δ= − , where ( ')t tδ −  is the Dirac delta function. 

The experimental procedure of the real-time feedback control system for realization of the 
virtual harmonic potential can be achieved as follows. The FPGA board generates the initial 
tuning voltage that locates the trap center to the initial position ( (0) 0Lx =  for simplicity). 

This tuning voltage is applied to the AOD via RF synthesizer driver resulting in an OT at the 
sample plane of the microscope. The PSD measures the position of an optically trapped 1 
μ m diameter polystyrene particle. The voltage signal from the PSD is acquired to the FPGA, 

which computes the feedback force ( )f t  corresponding to the shift of Lx  by the amount 

given by Eq. (1). The updated tuning voltage is applied to the AOD, the trap center is shifted 
to ( )Lx t  in feedback updating time 10ut =  μ s, and another measurement-feedback-cycle is 

repeated. 
Figure 3(a) shows the trajectories of the particle diffusing in the virtual harmonic potential 

for 12 different values of α , ranging from −0.77 (red) to 5.74 (purple) recorded at the 
constant stiffness of the OT, otk  = 41 pN/ μ m. The negative (positive) value of α  means that 

stiffness vk  of the virtual harmonic potential is smaller (greater) than the stiffness otk  of the 

OT, and α  = 0 (green) corresponds to no feedback, i.e. v otk k= . Figure 3(b) shows the 

probability distributions of the particle position in virtual harmonic potential obtained from 
six different particle trajectories (pointed by black arrows) in Fig. 3(a). The solid curves are 
obtained by fitting the experimental data with the Boltzmann distribution whose variance is 

given by 2
eff/Bx k T k= , where effk  is the effective stiffness of the virtual harmonic 

potential. The corresponding virtual harmonic potentials depicted in Fig. 3(c) fit well (see 
solid curves) with the effective harmonic potential 2

eff eff1 / 2  U k x= . This shows that the 

virtual potentials generated by the OFT are well described with the mathematical harmonic 
potential. 

Another quantity of interest is the measurement of dt , which can be obtained from the 

power spectrum analysis of the trajectories in Fig. 3(a). The power spectrum density function 
( )PS f  of the feedback trap can be obtained from the Fourier transform of Eq. (2): 

 
222

( ) ,
dj ft

c c

D
PS f

jf f f e ππ α −
=

+ +
 (3) 

where /BD k T γ=  is the diffusion coefficient, j  is the imaginary unit, and / 2c otf k πγ=  is 

the corner frequency. Note that for 0α = , Eq. (3) reduces to the power spectrum density of 
the normal optical tweezers. The solid curves in Fig. 3(d) show the experimentally measured 

( )PS f  for six different values of α  (pointed by black arrows in Fig. 3(a)). These measured 

data fit well with theoretical predictions (dashed curves) in Eq. (3), where 
12 21.1 10  mD −= × /s and cf  = 1792 Hz obtained from the fitting of ( )PS f  for 0α =  were 

used. We obtained the feedback force delay time dt  = 20 μ s for all α , which corresponds to 

2 ut . For 1 1.5α− < ≤ , the ( )PS f  follow the Lorentzian function. For α  > 1.5, ( )PS f  

deviates from the Lorentzian systematically until the particle overshoots the set point, leading 
to the damped oscillations, and a resonance in the power spectrum is observed for 6α > . 
Even with the resonance peak, the corresponding Lorentzian spectra agree with our 
theoretical prediction. 
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To find the relation between the variance of position fluctuations and the feedback gain, 
we rewrite Eq. (2) regarding discrete position nx  after the nth time step unt  as 

 1

2
1 .xot v

n n n n i u n u
ot

k k
x x x x t t

k

π ξ
γ+ −

  
= − − − +  

   
 (4) 

Here, i  is the delay time step of the feedback force and x
nξ  is the random Gaussian position 

fluctuations with mean 0 and with 2x x
m n u mnDtξ ξ δ=  where mnδ  is the Kronecker delta 

function. By squaring and averaging Eq. (4) [25], we derived the following relation between 

the variance 2
nx  and the virtual stiffness vk , 

 

( ) ( )
2 2

2 3

2 2 3 2 3

2 1 1

2 2 2 1 1 1

v

u

ot

n

v v v

ot ot ot

k
Dt

k
x

k k k

k k k

β

σ

β β β β β β β

+ − −

≡ =

− + − + − − − − − − − −

   
      

        
                  

(5) 

where /u Rtβ τ=  is the ratio of the updating time to the characteristic relaxation time 

/R otkτ γ=  for the particle in the OT. Figure 3(e) and its inset show the plot of 2σ  and effk  as 

a function of vk , respectively. The solid curve corresponding to Eq. (5) with ut  = 10 μ s 

agrees well with the experimental data. We found that initially effk  increases linearly with vk , 

later deviates from the linear behavior and becomes maximum at 200vk =  pN/ μ m. 

Accordingly, effk  is equal to vk  only in the linear region, which is ~2.3 times larger than otk  

for the current experimental conditions, providing an upper limit on vk  for which the particle 

dynamics in virtual harmonic potential are close to the real harmonic potential. This 
observation agrees with the above presented power spectrum analysis. The linear region can 
be extended further by decreasing otk  and ut  [26]. 

 

Fig. 3. (a) Trajectories of the particle in virtual harmonic potential for twelve different 
feedback gains α . (b) Probability distributions of the particle position and (c) the 
corresponding harmonic potentials obtained by using Boltzmann distribution for six 
trajectories pointed by black arrows in panel (a). (d) Plot of power spectral density from same 
six trajectories in the panel (a). (e) Plot of the position variance of the particle as a function of 

v
k . The solid line is the theoretical prediction of Eq. (5). Inset is the plot of 

eff
k  as a function 

of 
v

k  and the solid line is the guideline of slope 1. 
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3. The virtual double-well potential

Next, we show that our feedback control scheme can generate a virtual double-well potential. 
The mathematical form of the double-well potential is given by 

2 4
1 1

( ) 4 ,
2 4dw b

m m m

x x x
U x E A

x x x

    
 = − + −   
     

(6)

where mx±  is the position of the potential minima from the local maximum, bE  is the barrier 

height separating two minima, and A  is the tilt amplitude of either well. The shift of the 
potential center corresponding to the feedback force ( )dw x dwf U x= −∂  is given by 

( ) 3 2( ) 2 ( ) /L d d m mx t x t t x t t x Ax= − − − +   . Figure 4(a) shows the typical trajectories of the 

particle in the virtual symmetric double-well potential (A = 0) recorded for three different 
barrier heights /b BE k T  = 2 (red), 3 (green), and 4 (blue), respectively, with 50 nmmx = . The 

probability distributions of the particle trajectories depicted in Fig. 4(b) have two nearly 
symmetric peaks located at two potential minima of 50 nm± . The measured probability 

distributions fit well to the Boltzmann distribution ( ) exp( ( ) / )dw BP x U x k T∝ − . Figure 4(c)

shows the plots of the corresponding virtual double-well potentials fitting well to Eq. (6) (for 
the fit values, see Table 1). We also measured the average dwell time Dτ  of the particle in 

each well as shown in Table 1. Our measured dwell time agrees well with the mean residence 

time predicted by the Kramers theory, 2( ) / (2 2  ) exp( / )K m b b Bx E D E k Tτ π=  [27]. Figure 4(d) 

shows the plot of the virtual asymmetric double-well potentials tilted to the right (red) and to 
the left (blue) obtained from the probability distribution shown in the inset. The solid curves 
fit to the experimental data using Eq. (6) with 0A <  corresponding to the potential tilted to 
the right and vice versa. This means that the OFT can generate the mathematical double-well 
potential whose barrier height and well depths can be modulated in a controlled manner. 

Fig. 4. Realization of a virtual double-well potential via optical feedback trap. (a) Trajectories 

of the particle in symmetric virtual double-well potential for 
m

x  = 50 nm and /
b B

E k T  = 2 

(red), 3 (green) and 4 (blue). (b) Probability distributions obtained from the particle trajectories 
and (c) the corresponding double-well potentials. (d) Double-well potentials tilted to the right 
(red) and left (blue) obtained from the probability distributions depicted in the inset. 
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Table 1. Parameters characterizing the virtual symmetric double-well potential. The 
errors refer to the standard error. 

( )fittedmx  (nm) ( )fitted
/b BE k T Dτ  (ms) kτ (ms)

51 0.10± 2.03 0.03± 33 1± 43

52 0.06± 3.14 0.03± 79 3± 78

51 0.06± 3.94 0.03± 151 6± 159

4. Nonequilibrium fluctuations in time-varying harmonic potential

As an application of the OFT, we study the nonequilibrium fluctuations of a Brownian 
particle in virtual harmonic potential whose stiffness is varied in time as shown in Fig. 5(a). 
Here, the virtual stiffness vk  is varied linearly from the initial value ik  to the final value fk  

during the driving time τ . Prior study controlled the trap stiffness by adjusting the laser 
intensity [28]. This may change the bath temperature due to laser heating, and hence the 
particle dynamics may be affected. In addition, it could not modulate the trap stiffness at the 
faster rate. In comparison to the previous study, we change the trap stiffness in the much 
wider range of the driving time τ  without changing the laser intensity. 

The work performed on the particle when vk  is varied from ik  to fk  is given by [29] 

21
.

2

f f

i i

k k

v vk k
v

dU
W dk dk x

dk
= =  (7)

If τ  is much larger than the characteristic relaxation time Rτ , the system is in the quasistatic

state. Then, following the equipartition theorem, Eq. (7) can be written for Rτ τ>  as 

1
ln

2
f

B i

kW

k T k

 
=  

 
(8)

which is equal to the free energy difference / BF k TΔ  between the final and the initial states. 

For Rτ τ< , the system is out of equilibrium, and / BW k T  is no longer a fixed quantity, but 

rather has a distribution. Figure 5(b) shows the average work performed on the system 
obtained by changing the virtual stiffness linearly from 10 pN / μmik =  to 40 pN / μmfk =  

(vice versa) for 13 different τ  ranging from 50 μ s to 1 s during the forward (reverse) 

process. The error bar represents the standard deviation. We found that, for 10τ ≈  ms and 
greater, the average forward work (red circles) and the reverse work (blue squares) approach 
to the limit of Δ / ln 2BF k T =  and ln 2− , respectively, set by Eq. (8). For 10τ <  ms, the 

average work deviates from the limit of Δ / BF k T  which explains the irreversibility of the 

nonequilibrium process. Our result agrees with the thermodynamic second law for isothermal 

process, ΔW F≥ . The solid curves are fit to / / /B BW k T F k T B τ= Δ +  where B  is a 

constant and / BF k TΔ  is equal to ln 2  at the given stiffness difference, which is a universal 

feature for the optimal driving scheme [30]. 
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fluctuation theorem only a little off the equilibrium state, current study demonstrated its 
validity in highly nonequilibrium regimes as well. 

5. Conclusions

In conclusion, we developed a simple but effective technique based on the optical feedback 
force that can generate spatio-temporal potential with an arbitrary desired shape. We tested 
this technique by studying the dynamics of a Brownian particle in virtual harmonic potential 
whose stiffness can be modulated in a controlled manner by keeping the laser intensity 
constant, and confirmed that the dynamics of the particle in the virtual harmonic potential is 
very close to that of a genuine continuous potential. We also demonstrated the virtual double-
well potential whose barrier height and well depths are controlled to the desired shape. The 
average dwell time of the particle in symmetric virtual double-well potential agrees with the 
Kramers’ prediction. As an application of this technique, we tested the validity of Crooks 
fluctuation theorem by studying the nonequilibrium fluctuation dynamics of a particle in a 
harmonic potential whose stiffness is modulated with time ranging from near equilibrium 
process to highly nonequilibrium process. 

Since the OFT can generate the time-varying potential of any desired shape by 
manipulating an optically trapped particle with a high precision position detection and 
ultrafast feedback control, it will be a powerful experimental tool to study various phenomena 
in the fields of nonequilibrium and information thermodynamics. For example, the OFT can 
study the thermodynamics of resetting in the nonharmonic potential that is difficult to create 
with other techniques [31], and the realization of Feynman ratchet which requires a spatial 
series of continuous but asymmetric potentials to be systematically manipulated [32,33]. 
Since the OFT can increase the effective stiffness of the harmonic potential, combining it 
with fluorescent microscopy will allow trapping of the submicron sized fluorescent particle at 
considerably lower laser power. We noticed the similar independent work of the feedback 
trap using the optical tweezers [34]. 

Funding 

The MoST of Taiwan under the Grant No. 105-2112-M-008-026-MY3 (Y. J.) and The 
Korean government under the Grant No. IBS-R020-D1 (H. K. P.). 

Acknowledgment. 

We would like to thank P. Y. Lai, YungFu Chen and Jin Tae Park for helpful discussion. 

References 

1. U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines,” Rep. Prog. Phys. 
75(12), 126001 (2012).

2. C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements: A master-equation 
approach,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5018–5035 (1997).

3. T. Sagawa and M. Ueda, “Generalized Jarzynski Equality under Nonequilibrium Feedback Control,” Phys. Rev. 
Lett. 104(9), 090602 (2010).

4. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159
(1970).

5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical 
trap for dielectric particles,” Opt. Lett. 11(5), 288 (1986).

6. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.
94(10), 4853–4860 (1997).

7. P. Jones, O. Marago, and G. Volpe, Optical Tweezers: Principles and Applications, 1st editio (Cambridge 
University Press, 2015). 

8. W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for 
high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).

9. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and 
atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).

10. I. A. Martínez, É. Roldán, L. Dinis, D. Petrov, J. M. R. Parrondo, and R. A. Rica, “Brownian Carnot engine,” 
Nat. Phys. 12(1), 67–70 (2016).

Vol. 26, No. 23 | 12 Nov 2018 | OPTICS EXPRESS 29914 



11. A. Simon and A. Libchaber, “Escape and synchronization of a Brownian particle,” Phys. Rev. Lett. 68(23),
3375–3378 (1992). 

12. L. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional 
optical trap,” Nature 402(6763), 785–787 (1999).

13. G. Paneru, D. Y. Lee, T. Tlusty, and H. K. Pak, “Lossless Brownian Information Engine,” Phys. Rev. Lett. 
120(2), 020601 (2018).

14. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification 
of Landauer’s principle linking information and thermodynamics,” Nature 483(7388), 187–189 (2012).

15. A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. 
Phys. Lett. 86(9), 093109 (2005).

16. A. E. Cohen and W. E. Moerner, “Suppressing Brownian motion of individual biomolecules in solution,” Proc. 
Natl. Acad. Sci. U.S.A. 103(12), 4362–4365 (2006).

17. A. E. Cohen, “Control of Nanoparticles with Arbitrary Two-Dimensional Force Fields,” Phys. Rev. Lett. 94(11),
118102 (2005). 

18. M. Gavrilov, Y. Jun, and J. Bechhoefer, “Real-time calibration of a feedback trap,” Rev. Sci. Instrum. 85(9), 
095102 (2014). 

19. Y. Jun, M. Gavrilov, and J. Bechhoefer, “High-Precision Test of Landauer’s Principle in a Feedback Trap,” 
Phys. Rev. Lett. 113(19), 190601 (2014).

20. M. Gavrilov and J. Bechhoefer, “Erasure without Work in an Asymmetric Double-Well Potential,” Phys. Rev. 
Lett. 117(20), 200601 (2016).

21. M. Gavrilov, R. Chétrite, and J. Bechhoefer, “Direct measurement of weakly nonequilibrium system entropy is
consistent with Gibbs-Shannon form,” Proc. Natl. Acad. Sci. U.S.A. 114(42), 11097–11102 (2017).

22. G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy 
differences,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(3), 2721–2726 (1999).

23. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical 
tweezers,” Opt. Lett. 23(1), 7–9 (1998).

24. Y. Jun, S. K. Tripathy, B. R. J. Narayanareddy, M. K. Mattson-Hoss, and S. P. Gross, “Calibration of Optical 
Tweezers for in Vivo Force Measurements: How do Different Approaches Compare?” Biophys. J. 107(6), 1474–
1484 (2014). 

25. Y. Jun and J. Bechhoefer, “Virtual potentials for feedback traps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 
86(6), 061106 (2012).

26. A. E. Wallin, H. Ojala, E. Hæggström, and R. Tuma, “Stiffer optical tweezers through real-time feedback 
control,” Appl. Phys. Lett. 92(22), 224104 (2008).

27. P. Hänggi, P. Talkner, and M. Borkovec, “Reaction-rate theory: fifty years after Kramers,” Rev. Mod. Phys. 
62(2), 251–341 (1990).

28. D. Y. Lee, C. Kwon, and H. K. Pak, “Nonequilibrium Fluctuations for a Single-Particle Analog of Gas in a Soft 
Wall,” Phys. Rev. Lett. 114(6), 060603 (2015).

29. K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics (Springer Berlin Heidelberg, 2010), Vol. 799. 
30. T. Schmiedl and U. Seifert, “Efficiency at maximum power: An analytically solvable model for stochastic heat 

engines,” Europhys. Lett. 81(2), 20003 (2008).
31. J. Fuchs, S. Goldt, and U. Seifert, “Stochastic thermodynamics of resetting,” Europhys. Lett. 113(6), 60009

(2016).
32. R. P. Feynman and R. B. Leighton, The Feynman Lectures on Physics (Pearson, 2006). 
33. J. Bang, R. Pan, T. M. Hoang, J. Ahn, C. Jarzynski, H. T. Quan, and T. Li, “Experimental realization of

Feynman’s ratchet,” ArXiv Prepr. 1–6 (2017).
34. A. Kumar and J. Bechhoefer, “Nanoscale virtual potentials using optical tweezers,” arXiv Prepr. 

arXiv:1809.02896 (2018). 

Vol. 26, No. 23 | 12 Nov 2018 | OPTICS EXPRESS 29915 




