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ABSTRACT

RNA structures possess multiple levels of struc-
tural organization. A secondary structure, made of
Watson–Crick helices connected by loops, forms
a scaffold for the tertiary structure. The 3D struc-
tures adopted by these loops are therefore criti-
cal determinants shaping the global 3D architecture.
Earlier studies showed that these local 3D struc-
tures can be described as conserved sets of ordered
non-Watson–Crick base pairs called RNA structural
modules. Unfortunately, the computational efficiency
and scope of the current 3D module identification
methods are too limited yet to benefit from all the
knowledge accumulated in the module databases.
We present BayesPairing, an automated, efficient
and customizable tool for (i) building Bayesian net-
works representing RNA 3D modules and (ii) rapid
identification of 3D modules in sequences. Baye-
sPairing uses a flexible definition of RNA 3D mod-
ules that allows us to consider complex architectures
such as multi-branched loops and features multi-
ple algorithmic improvements. We benchmarked our
methods using cross-validation techniques on 3409
RNA chains and show that BayesPairing achieves
up to ∼70% identification accuracy on module posi-
tions and base pair interactions. BayesPairing can
handle a broader range of motifs (versatility) and of-
fers considerable running time improvements (effi-
ciency), opening the door to a broad range of large-
scale applications.

INTRODUCTION

RNA structures are hierarchically organized (1). Initially,
the molecule folds by forming Watson–Crick and Wobble
base pairs stacking onto each other to create stems. These

stems are connected by loops, themselves stabilized by intri-
cate networks of non-canonical base pair interactions and
structural modules. Those structural modules can be de-
fined as recurrent networks of base pairs and stacking inter-
actions. Then, the specific 3D structures of these connect-
ing loops help shaping the tertiary structure of the RNA
molecule. Eventually, other interactions connecting distant
secondary structure elements are also formed to stabilize
the full complex.

The identification of local 3D modules is therefore an im-
portant step in the RNA 3D structure prediction pipeline.
However, in contrast to the well-established secondary
structure prediction methods (2,3), the technology to ad-
dress this challenge is still in its infancy.

A first step toward accurate prediction of 3D modules is
the identification of conserved 3D structures occurring in
natural sequences. Several algorithms have been developed
to retrieve these local 3D modules (4–7) and characterize
their function (8), and databases such as the RNA 3D Mo-
tif Atlas (9), RNA FRABASE (10), RNA Bricks (11)
and CaRNAval (12) have already started assembling this
information. Yet, the scope of these systems varies and no
widely accepted solution has yet emerged.

Based on this information, several groups developed
computational tools to score and retrieve 3D modules in
RNA sequences. To date, RMDetect is among the most
promising approaches (13). The latter uses Bayesian net-
works to represent base pairing tendencies learned from se-
quence alignments of 3D modules, and uses this knowledge
to identify candidate modules within annotated sequences.
Another recent option is JAR3D (14), which has refined the
methodology for scoring multiple 3D modules on new se-
quence variants. This technology has been used within the
metaRNAmodules pipeline for scanning complete RNA
databases and retrieving modules showing evidence of evo-
lutionary conservation (15,16).

However, the aforementioned methods still have some
limitations. In particular, despite the excellent performances
reported by RMDetect, the approach suffers of high com-
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putational costs and a minimal structural diversity in the
modules considered due to its base pair probabilities scan-
ning method. Similarly, JAR3D has not been designed to
maximize its scanning capabilities and is thus best used for
scoring applications.

In this paper we present BayesPairing, an efficient
and customizable tool for (i) building Bayesian networks
representing RNA 3D modules and (ii) rapid identifica-
tion of 3D modules enabling genome-wide applications.
BayesPairing expands upon the RMDetect methodol-
ogy and features multiple algorithmic improvements that
result in considerable speed improvements, while maintain-
ing similar or better accuracy. Moreover, BayesPairing
uses a flexible definition of RNA 3D modules allowing us
to consider complex modules such as multi-branched loops
and flexible modules allowing us to capture 3D features not
supported by previous methods. Our tool is therefore highly
customizable, interfaceable with any module databases and
is already available at http://bayespairing.cs.mcgill.ca for
scanning for new modules.

We tested BayesPairing on two different 3D mod-
ule datasets focusing on two distinct classes of modules,
and evaluated our methods on 3409 chains of experimen-
tally determined 3D structures. The first module dataset is
composed of hairpins, internal loops and multi-branched
loops retrieved with Rna3Dmotif (6). By contrast, the
second dataset includes complex modules featuring varia-
tions in the base pair type and distance between nucleotides
among different examples of the same module (9). Overall,
we apply our techniques to hundreds of modules from two
datasets. Our results show a base pair identification accu-
racy of ∼35–75%, with ∼30–60% of fully predicted mod-
ules (i.e. all canonical and non-canonical base pairs were
correctly identified).

MATERIALS AND METHODS

Our approach is implemented in a Python package called
BayesPairing and is freely available as a web-server
and a downloadable git repository at http://bayespairing.cs.
mcgill.ca. An installation guide can be found in the Supple-
mentary Data, as well as on the web-server. The required
input is a sequence to parse and a dataset of modules to
identify (a basic, all-purpose dataset is provided). The ad-
dition of a new module requires a description of 3D inter-
actions in the .desc format (6) and a .fasta file with
the sequences, which can come directly from the graph ex-
amples, from prior knowledge, or from an Rfam alignment
(17).

Modeling RNA structure as a graph

An RNA module can be conveniently represented as a
directed graph with labeled edges, where each node is a
base and edges represent pairing interactions from 5′ to 3′.
The graph representation of an RNA structure contains 13
types of interactions. Backbone interactions, or phospho-
diester bonds, determine the sequence organization in the
5′-3′ order of nucleotides. However, most backbone inter-
actions are not included in the edge set when building the
Bayesian network due to the generally weak dependence re-

Figure 1. The structure of an RNA 3D module, specifically a three helix
multi-branched loop from Rna3Dmotif. This module has three cWW (a
double line), one tSH, one cSW (in Leontis-Westhof notation) and ten di-
rected backbone interactions (a single line with an arrow). There are also
two stacking interactions (a single line with no arrow).

lationship among partners of a backbone interaction out-
side the sequence signal, which is preserved and encoded
in the sequence search rather than in the Bayesian Net-
work. In this article, we define a strand of nucleotides that
is part of a module as a component. For example, a hairpin
loop has a single component that we can scan the sequence
for, whereas a three-way junction has three. The remain-
ing interaction types are base pairs classified with respect
to their geometry. Following the Leontis-Westhof classifi-
cation (18), there are 12 classes of base pairs. They are de-
fined following their orientation cis (c) (resp. trans (t)) and
the name of the nucleotides’ interacting faces. Three sym-
bols are also used to describe the interactions. They are the
Watson-Crick (W) • (resp. ©), Hoogsteen (H) � (resp. �)
or Sugar-Edge (S) � (resp. �) faces. Thus, each base pair is
annotated using a string from the set: {c,t}×{W,S,H}2 or
by combining previous symbols. When it is the same edge
interacting on both nucleotides, only one symbol is used.
We show in Figure 1 how a sequence in a specific mod-
ule configuration can be represented as a graph. This mod-
ule contains five base pairs, two canonical GC, one canoni-
cal AU, all cis Watson–Crick/Watson–Crick, one GA trans
Sugar/Hoogsteen and one CA cis Watson–Crick/Sugar.
There are also 10 backbone interactions.

It should be noted that such a graph encodes a recur-
rent network of interactions. Using a definition based on
biological significance, an RNA 3D module can be defined
as a set of recurrent networks of base pairs and stacking
interactions that lead to the same local 3D structure. Re-
currence here can be defined in two ways. In RMDetect,
it is observed from the presence of a conserved sequence
motif associated with local 3D structure in a multiple se-
quence alignment. In Rna3Dmotif and CaRNAval, recur-
rence is observed by finding the same set of interactions
in crystal structures of distinct RNA molecules with graph
isomorphism methods. As a consequence, there can be sev-
eral distinct graphs based on FR3D (5) annotations that are
representations of the same module, due to biological vari-
ability but also eventual imprecision of annotations. This is
why our methods focus on detecting variations of the model
graph as potential occurrences of the module.

Learning a Bayesian network from structural module data

Module graphs to Bayes Nets. The aim of this work is
to model the sequence variability and dependence relation-
ships for any given 3D module. More generally, we wish to
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model the distribution P(x1, x2, ..., xN | b), where xi s are
the N nucleotides in the module and b is a given module. To
model the dependence relationships among the partners of
a base pair, there is a natural transformation from the graph
of a 3D module to its representation as a Bayesian net-
work. In such network, a node represents a nucleotide, and
an edge represents a base pair interaction (canonical, non-
canonical, or stacking interaction). Importantly, Bayesian
networks require directed edges and the absence of cycles.
To maintain this condition, and because the backbone is
oriented, base pairs are modeled as directed edges from the
5′ end to the 3′ end of the module.

The probability distribution of each node is
learned from data and has a cardinality of 4.
The P(node, parent) Bayesian table has a size of 4|πn+1| ,
where |�n| is the number of parents (or in degree) of the
node n. The Bayesian networks were implemented with
pgmpy, a Python library for probabilistic models.

Learning node and edge parameters. By definition, each se-
quence belonging to a module shares the same, or a closely
similar set of interactions, and therefore maps to the same
Bayesian network. The node values (nucleotide probabili-
ties) are learned from the sequences with respect to nodes
they are conditioned on. For a node with no parent, the
known sequences are used to generate the statistics, which
is identical to a position-weight matrix. For a node with a
parent, the statistic is P(nucleotide | parent). In that case,
for each node, for each combination of parent–nucleotide,
the known sequences are parsed until the conditional prob-
ability distribution (CPD) is established. To correct for po-
tentially missing data, artificial sequences are created and
injected into the dataset. They are built such that a minimal
probability of 0.1 is added for each possible combination,
after which we renormalize the probabilities to maintain a
sum of 1.

Sequence probability. The probability of a sequence over a
module (i.e. an assignment of node values) is derived from
the properties of the Bayesian network. Given a sequence,
we first compute a probabilistic score as P(sequence |
module). It is defined as the product of the probability of
each node taking the value of some position in the input
sequence given its parents, obtained by inference. Second,
we chose as background probabilities the equiprobability of
any nucleotide at each position. We then take the log of this
value, a score output observed to be between -40 and 50.

Let N be the number of nucleotides in the module, and m
be the nucleotide of the scored sequence corresponding to
the node n. �n is the set of parents of node n, and Qn the ac-
tual nucleotide associated with each parent in the sequence.
The complete equation for the probability, from the joint
distribution of the Bayes net, is defined as follows:

P(sequence | module) =
N∏

n=1

P(n = m | πn = Qn). (1)

The probability score is then divided by the background
probabilities

( 1
4

)N
to normalize by size.

Regular expressions as a sequence mining tool

The secondary structure of some RNA strand is more con-
served than its sequence, so the base pair signal is a safer
information to look for when parsing for modules. The
state-of-the-art tool,RMDetect, scans the secondary struc-
ture landscape (the base pair probabilities predicted by
RNAfold (2). Indeed, this is especially true for hairpins,
which have an extremely well-defined secondary structure
signature, a sequence of unpaired bases within a base pair.
However, this comes at the price of facing serious road-
blocks when attempting to predict modules that are not al-
ways consecutive in sequence, because the different compo-
nents of the module can occur in any order and, due to the
lack of specificity of the secondary structure signal, there
will often be up to thousands of possible insertion sites to
consider, even in a sequence of 200 nucleotides. This would
make it practically impossible to predict k-way junctions,
which is a downside of RMDetect.

To tackle this issue, we use a new scanning method based
on regular expressions, a string searching method based
on pattern matching. Regular expressions are efficient and
allow our approach to focus on the sequence rather than
the secondary structure. The extended alphabet allows us
to distinguish between sites with similar secondary struc-
tures, improving accuracy for complex modules like multi-
branched loops. If a sensitivity comparable to the state-of-
the-art methods can be obtained with regular expressions,
then the overall search will be significantly faster, and this
method will represent an improvement.

In order to achieve such a high level of sensitivity, many
different regular expressions are used to scan the sequence
for the different forms the module can adopt. For instance,
the components of an internal loop can be found in two dif-
ferent 5′-3′ orders, thus we use two distinct regular expres-
sions to parse for both possibilities.

From Bayes net to a fuzzy regular expression. Since the
number of potential sequences for a module is exponential
in the length of the module, we approximate the distribution
of Bayes net sequences with Gibbs sampling, a method that
performs random walks on the sequence space. We generate
25 000–100 000 sequences from the probability distribution
of the Bayesian network, P(sequence | module). The sam-
pling process can take several minutes for large modules but
only has to be performed once to build a re-usable model.

The set of maximal probability sequences from this sam-
ple is used to filter the sequences to build the regular ex-
pression. All sequences with a probability below 5% of the
highest value are discarded. To modify the sensitivity of the
tool, this value can be modified through a user parameter.

For each position, the allowed nucleotides are deter-
mined as follows. For each base, we collect all sampled se-
quences having that nucleotide at the current position, and
take the sum of their probabilities. We then build sequence
statistics by selecting as possibilities all nucleotides that have
a value of at least 25% of the maximal value for that posi-
tion, and computing their weighted average. This parameter
can be adjusted by the user based on prior knowledge, but
a higher threshold becomes too permissive and a lower too
restrictive (data not shown).
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When the nucleotides of a module are not consecutive,
distance between different strands must be established. Two
strands are considered separate when the distance between
them is more than 5 bases. For consecutive strands, most of
the search is focused on a distance range of at most 150% of
the maximum observed in the module alignment, although
longer matches are considered up to the full length of the in-
put sequence. We add this limit to the distance because our
approach, like many other structure prediction tools, relies
on a structure prediction on the input sequence and, given
that RNAfold loses much of its accuracy beyond lengths of
200 nucleotides, BayesPairing could not establish with
high confidence that the secondary structure context allows
for the insertion of such module. Thus, a search for per-
fect or near-perfect sequence matches at long distances is
executed, and such modules will be detected by our tool,
but more subtle module site candidates cannot be called
with high confidence when separated by more than 200 nu-
cleotides. The minimum distance is set to 4, one nucleotide
longer than the minimum length of a hairpin, the smallest
structure that can separate two strands. For strands between
which the distance varies at most by 1 through the train-
ing data, we assume that there is a biological meaning to
this value, so the range is fixed to the distances observed in
the data. In general, regular expressions are known to pre-
fer long matches over variable distance. This bias must be
compensated by the use of not one, but several regular ex-
pressions, allowing increasing distances between the com-
ponents for each. The level of coverage of the distance be-
tween components, which will be correlated with sensitivity,
can be determined by a user-defined parameter.

Because we are presenting a framework to assign a prob-
ability score to candidates, it is important to adapt the reg-
ular expression to gather as many promising candidates as
possible to maximize the chances of finding at least one can-
didate. The input sequence is scanned multiple times by a
regular expression, while increasing the number of allowed
substitutions, from zero to a third of the size of the module
(the s ≤ x term in the regular expression). Moreover, the first
half of the sequence is also scanned separately to correct for
the bias of the regular expressions, and find more distinct
candidate for scoring, which can improve the accuracy at a
low computation cost. More fractions of the sequence can
be scored based on a user-defined parameter depending on
how much sensitivity is desired.

Finally, to allow for the representation of components in
any order (as, for example, the two interacting components
of an internal loop can appear in either order), the compo-
nents are swapped, and regular expressions are used to mine
the sequence for any order. This process requires the use of
a · k regular expressions for a k-way junction, where a is the
number of expression variants per regular expression, and
k is the number of branches. Indeed, only the 5′-3′ strand
orders preserving the correct helix order need to be consid-
ered.

This method is consistently faster than the alternative for
non-hairpin modules (see ‘Results’ section).

The regular expression is implemented with the python
module regex, an extension of the standard re module
that allows substitutions.

Here is an example of such regular expression:

((C[A|G])([ACGU]{3, 72})(A[C|G])

([ACGU]{3, 84})([C|G][A|G][A|G])){s <= x}
In this example there are three strands. The first always

starts with C, followed by A or G. The term ([ACGU]{4, z})
defines a stretch of any nucleotide (a gap) of length 3 (the
minimum) to a maximum of z. In this case, the first stretch
is at most 72 nucleotides (150% of the maximum observed
in examples). The second strand starts with an A followed
by C or G. Then there is another gap of at most 84 positions.
Finally the last strand has three nucleotides, the first is a C
or a G, the last two are each an A or a G. The outside paren-
theses represent regex groups, which are used subsequently
to extract those nucleotides from the one continuous se-
quence returned by the regex library. Finally, the s <= x
term is a feature of the python regex module that speci-
fies a fuzzy matching, with at most x substitutions. In this
expression, s signifies substitution and x is the parameter
that determines how many are allowed. In our implementa-
tion, x starts at zero and is progressively increased to allow
for candidates that are distinct from a perfect match. The
maximal value of x depends on the size of the Bayes net
and the level of flexibility required by the user.

Scanning input sequences for candidate module sites. The
software we present, BayesPairing, can take as input
any valid RNA sequence. Those above 300 nucleotides are
pre-processed (see ‘Long sequences’ section). This cutoff
value was chosen as twice what has been proven to be a real-
istic length for the local folding of RNAs (19). The accuracy
on long sequences can be greatly improved if the secondary
structure is known as it can be provided to our pipeline.

Evaluating the probability of the presence of the module at a
candidate site

Probability score. All candidates obtained with the regu-
lar expression parsing are evaluated with the P(sequence |
module) score previously presented, which is sometimes suf-
ficient, but does not account for secondary structure com-
patibility. Indeed, there are situations in which a set of po-
sitions have the perfect subsequence to fold into a specific
module, but doing so would require a very suboptimal sec-
ondary structure. To account for that common occurrence,
the probability score is corrected by a secondary structure
compatibility evaluation.

Modeling module insertion as secondary structure con-
straints. To include secondary structure information, we
used an approach very similar to the base pair probabil-
ity computation presented in RMDetect (13). We lever-
age Cruz and Westhof’s assumption that computing a sec-
ondary structure ensemble with RNAfold is a sufficient
approximation of the influence of the module on the sec-
ondary structure. Note that we benchmarkedBayesPair-
ing in the situation where the secondary structure of the
input sequence was not known, but a secondary structure
provided by the user can be used for more accurate folding
and faster execution.
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The 3D modules described in the context of this project
can have secondary and tertiary structure base pairs. In
terms of secondary structure, this implies that all nodes
of every module provide information about being part of
a canonical base pair, or the location of an absence of
canonical base pair. This situation can easily be modeled
by RNAfold’s (version 2.3, the latest) hard constraints.
The candidate sequence c is folded first with RNAsubopt
without constraints, and then folded again with constraints
(“(”,“)” for base paired positions, “x” for unpaired posi-
tions) at the positions of the candidate module placement.
We use the method presented by RMDetect (13) to as-
sign an energy score to the quotient of the unconstrained
and constrained ensemble energies. This energy score is
computed with constants T = 274.5L and k = 1.98717 ×
10−3 kcalmol−1, from the Vienna package source code and
RMDetect. It is defined as follows :

BPPc = e
−Ens. FEc

kT

e
−Ens. FEall

kT

or, in a simplified version :

BPPc = e
F Eall−F Ec

kT

It leads us to the final score formula:

S = log(4NP(sequencec | module)) − 1
w

· log(BPPc)

where we typically assign a value between 1 and 2 to w,
depending on how much weight is put on secondary struc-
ture compatibility. At values lower than 1, the secondary
structure information tends to vastly outweigh the sequence
signal, and at values higher than 2, the difference between
two insertion options often becomes negligible.

Final score and output. As described in the equation for
S, we compute the log of the structural context score de-
scribed above and add it to the P(sequence | module) score.
If the secondary structure allows for the insertion of the 3D
module at the candidate positions, the constrained and un-
constrained folds will be similar and the score will not be
significantly changed, whereas unfavorable ensembles will
penalize the probabilistic scores proportionally to how un-
favored they are. After this correction, the candidate posi-
tions are returned to the user with their subsequence, posi-
tion and probability score. The number of candidate posi-
tions in this output is defined by the user-defined parameter
n (default value : 4).

Long sequences

Because of the small alphabet, regular expressions do not
perform well on sequences longer than 300 bases. More-
over, our methods require multiple RNAfold calls for each
sequence, which strongly decreases efficiency and/or accu-
racy depending on the technique used. This folding diffi-
culty means that this length limitation is not unique to reg-
ular expression-based methods, and state of the art software
like RMDetect also relies on window scanning for longer
sequences. Longer sequences can still be parsed by the soft-
ware we present, but the input sequence is cut in windows

(of size selected by the user). Module insertion site candi-
dates are returned in terms of their position in the initial
(long) sequence.

RESULTS

Datasets

While many datasets of RNA 3D modules exist, we chose to
evaluate BayesPairing two that contain complex mod-
ules that cannot be predicted with previous methods.

The first is Rna3Dmotif (6), which contains arbitrary
secondary structure elements (SSEs), such as hairpins and
interior loops but also multi-loops, obtained from subgraph
recurrences in the Protein Data Bank (PDB) database.
Rna3Dmotif features modules obtained from a strict
graph match, thus hairpin modules are represented as full
hairpins, and the base pairs are always identical between
occurrences. All modules with occurrences in more than
20 distinct PDBs annotated by FR3D were included in the
dataset, for a total of 98.

The second is RNA 3D Motif Atlas (version 3.2), an
exhaustive database of hairpin and internal loops generated
from the current representative set of FR3D, with a non-
redundant clustering technique based on maximum cliques
(9). RNA 3D Motif Atlas features more realistic, flexi-
ble modules, which can have different sizes, can include only
the interacting bases of a hairpin, and can have different
base pairs between examples of the same module. All mod-
ules with at least two examples, and for which at least two
occurrences had the same number of edges (for a sensible
consensus graph representation), were included, for a total
of 134.

The k-way junctions of Rna3Dmotif and the flexible
module definition of RNA 3D Motif Atlas are comple-
mentary tools to validate BayesPairing, and compare it
to the state of the art.

Unlike RMDetect, BayesPairing does not directly
require a Rfam alignment to learn models. However, infor-
mation from a Rfam alignment can be used as an input
when available and improves the quality of the model when
provided.

Validation

Test sets from PDB. Both Rna3Dmotif (see ‘Datasets’
section) and RNA 3D Motif Atlas learn their modules
from PDB graphs, and each example is taken from a PDB
structure. The test set we used to evaluate the software con-
sisted of the sequences from those PDB structures as re-
ported in the PDB file. We performed leave-one-out cross-
validation on PDB sequences by excluding the correspond-
ing chain from the data, learning and sampling the Bayes
net for each input, and testing BayesPairing on the excluded
sequence.

Evaluating BayesPairing’s accuracy with two metrics.
To assess the performance of BayesPairing, we ex-
tracted the RNA sequences from the PDB structures that
were used to learn each 3D module, and used each of those
sequences as an input for the software with leave-one-out
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cross-validation. The first metric used to measure the accu-
racy of a module identification on such input sequence is the
proportion of correctly predicted base pairs. A base pair is
considered correctly predicted when BayesPairing pre-
dicts some interaction, in the Leontis–Westhof nomencla-
ture, and the same interaction is found at the same posi-
tion in the PDB structure. However, the predicted base pairs
does not tell the whole story. Indeed, for many modules in-
cluding a component that is distant in sequence, it is possi-
ble to predict correctly the majority of the positions in the
module without predicting any correct base pair. A score
of 0 is then quite misleading because although imperfect,
this partial information can definitely be leveraged, namely
with better secondary structure information about accessi-
ble partners. For this reason, we use the proportion of cor-
rectly predicted nucleotides as an alternate accuracy metric.
The accuracy reported for each sequence is obtained from
the highest scored candidate returned by BayesPairing.
To put those scores in the context of the filtering tool, we
also reported best of five candidates results in Table 1. For
that experiment, BayesPairing outputs five candidate inser-
tion sites, and the highest accuracy one is used to com-
pute the accuracy score, in order to demonstrate how much
the identification improves when considering more than one
candidate. The mean of the accuracy is then computed over
the PDB sequences of length under 300, or on a window of
105 to 300 nucleotides known to include this module for
longer sequences. A total of 3409 sequences from FR3D-
annotated structures composes the test set.

Comparing Rna3Dmotif results to negative sequences

The first key characteristic of a useful probabilistic iden-
tification software is that its prediction score is meaning-
fully correlated with the presence of a module in the input
sequence. A fast way to assess whether that is the case is
to accumulate sequences of 98 modules, and compile the
score returned by BayesPairing for the top prediction,
for each sequence. Then, this distribution can be compared
to its corresponding background distribution by repeating
this method, but after shuffling the sequences while preserv-
ing their dinucleotide distribution.

As shown in Figure 2, the score distribution is completely
different between negative and positive sequences, which
tends to indicate that BayesPairing could meaningfully
be used as a filtering tool. We also performed validation
on the BayesPairing predictions on shuffled sequences,
and confirmed that no module achieved an average accu-
racy above 0.06, indicating that a strong accuracy store is
unlikely to be obtained by chance.

Validating on 98 Rna3Dmotif modules

Rna3Dmotif contains modules that come from strictly
equivalent graphs, which means that they are usually near-
continuous in sequence (or built from larger strands), and
are more conserved than the modules generated by RNA 3D
Motif Atlas. It also does not handle redundancy as well
as the RNA 3D Motif Atlas, which means that some of
the modules are artifacts of similar PDB structures. Never-
theless, this allows us to study the upper limit of the perfor-
mance of BayesPairing. We observe that a majority of

Figure 2. Comparison of BayesPairing module probability score be-
tween positive and negative sequences.

modules are identified perfectly, with 63 of the 98 modules
achieving the maximum score on the base pair prediction
metric.

The position metric results are similar, albeit slightly
worse. This discrepancy can be mainly attributed to two rea-
sons. First, some of the occurrences come from PDBs that
have an off by one error in their sequence (a nucleotide is
absent), which is not caught by FR3D, so the base pair iden-
tifications that we validate that way are correct, but the po-
sitions that we obtain from the PDB structure itself have a
one off error. This is an error that we were able to reproduce
on modules of this dataset with RMDetect, a software with
a significantly different workflow.

Second, for modules with a distant partner strand, a dif-
ferent partner strand can be predicted by the software which
happens to have the correct base pairs. In that case, the base
pair identification will be perfect, but the position identifica-
tion will be slightly off. It should be noted that since those
alternate long range partners have the same sequence and
base pair signatures, they could potentially constitute viable
module insertion sites, and detecting them is not strictly a
false positive in the context of a tool that will eventually be
used for de novo discovery.

Validating on 134 BGSU RNA 3D Motif Atlasmodules

Comparatively to the very well-defined and sometimes re-
dundant modules of Rna3Dmotif, the RNA 3D Motif
Atlas modules are much harder to predict. Indeed, even
though those two module datasets are generated from the
same source data, they are curated for different purposes
and have different biases. RNA 3D Motif Atlas mod-
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Figure 3. Mean leave-one-out cross-validation accuracy of base pair and
position predictions on our Rna3Dmotif and RNA 3D Motif Atlas
datasets, considering the accuracy of a single module location output by
BayesPairing

ules typically have many fewer occurrences as they are or-
ganized based on conserved resulting 3D structure rather
than graph structure similarity of the occurrences, result-
ing in differences between occurrences that, with a small set
of examples, can make prediction difficult. Due to 64 of the
modules having only two examples, the leave-one-out cross-
validation method is particularly punishing for the design of
a regular expression because the two examples are often too
different in terms of sequence identity, size and base pairs
for one to be sufficient to predict the other. As opposed to
the previous section that could give us a glimpse at a perfor-
mance ceiling, this is an opportunity to draw a performance
floor. Despite the difficulty of the task, BayesPairing is
able to find a significant base pair signal for a majority of
the modules.

In Figure 3, we observe that 33 of the 134 modules re-
ceive a base pair accuracy of zero. Out of those 33 mod-
ules, 20 only have two examples. Most of those examples
have a difference of size or distance between the two oc-
currences, which means that BayesPairing is searching
through the sequence for a module of the wrong size, and
explains its failure as a direct consequence of the validation
method. Figure 5 shows BayesPairing performs much
better when given both examples to build its model. Out of
the other 13, the software is able to perceive a position sig-
nal for all but one; only 1 of the 138 modules is thus truly
unaccounted for in terms of signal.

Overall, some modules are very difficult to predict be-
cause they have few occurrences and include at least one
component that is small, distant in sequence and has low
sequence specificity. However, some partial credit should be
given for finding one or several of the components that form
the module. Indeed, Figure 3 presents RNA 3D Motif Atlas
position identification results that are closer to the distribu-
tion shown for the other dataset, even for those modules
with low base pair signal.

Finally, unlike in the case of Rna3Dmotif, the full mod-
ule is rarely predicted perfectly. The software identifies the
location of most of the nodes of the module, occasionally
missing out on the base pairs with partners that are dis-
tant in sequence, but both datasets show a very clear cross-
validation signal. The overall scores presented in Table 1
demonstrate a significant signal, indicating that Baye-
sPairing could at least successfully be used as a filter tool
for module candidates, as long as it does not perform worse
than state-of-the-art tools.

Comparison to RMDetect

We need to demonstrate that the use of regular expressions
in sequence scanning does not cause a loss in sensitivity
compared to other methods. There is currently only one
other software that performs quantitative sequence search
for user-submitted modules: RMDetect, from which some
of our methods are inspired. In order to compare the sen-
sitivity of the two software, because RMDetect does not
yet allow the addition of more than a single model at a
time, we sampled 47 modules from five categories in the two
datasets. For each dataset, we aimed to select 10 modules
for which our software had strong accuracy, 10 for which
the accuracy was average and 10 that it could not predict.
When fewer than 10 were available in a reasonable range
for such categorization, all available modules were used.
When more than 10 modules could fit the conditions, 10
were selected randomly. From the RNA 3D Motif At-
las dataset, 10 modules among those who received an ac-
curacy score over 0.9, 10 between 0.4 and 0.6, and 10 un-
der 0.2. From theRna3Dmotif dataset, 10 modules among
those who obtained 100% accuracy, and the 7 worst, as only
7 modules received an accuracy score under 50%. Due to
the paucity of low-accuracy modules in the latter dataset,
the low-accuracy category was skipped as including mod-
ules with accuracy above 50% in such a category would be
misleading.

We also wanted to measure the gain in speed associated
with this approach. Because speed mostly depends on the
number of components and the length of the sequence,
we compared the average speed on sequences of increas-
ing lengths containing two hairpins, one three-way junction
and one four-way junction. Since the only category of mod-
ule for which search speed can be disputed between the two
softwares is the internal loop, we compiled the average for
sequences from four internal loop modules.

Every test mentioned in this paper was run on Intel(R)
Xeon(R) CPU E5-2667 0 @ 2.90GHz, Ubuntu 16.0.4 with
23 cores, with a total physical memory of 792 gigabytes.

Running time. BayesPairing’s running time, like most
sequence mining tools, is dependent on parameters relating
to sensitivity. The two main ones are m, an integer between
2 and 10, which represents the number of module insertion
candidates to be structurally tested with RNAsubopt, and
m, the number of extra substitutions allowed in the regu-
lar expression compared to the baseline number of size/3
(default 0).

The asymptotically slowest step in the pipeline is the
RNAfold secondary structure validation step, which takes
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Table 1. Mean leave-one-out cross-validation accuracy for both metrics and datasets

Rna3Dmotif 3D motif atlas

Candidates Position Base pair Position Base pair

5 0.794 0.879 0.655 0.472
1 0.660 0.769 0.441 0.379

The number of candidates refers to how many insertion site suggestions are outputted by BayesPairing. The highest accuracy suggestion is considered
for this test.

up to 0.3 s for a sequence of length 200, for each candidate.
This folding step is essential for a method that scans the
sequence itself rather than the secondary structure, as out-
putting a candidate without any kind of secondary struc-
ture information would be reckless. Beyond the folding,
the search time increases linearly based on the number of
strands of the module.

This is a marked difference with RMDetect, which must
scan base pair probabilities for every possible combination
of sequence components. In a sequence of length 200, when
scanning for a hairpin of 10 consecutive bases, there are
only 181 possibilities. However, a four-way junction, with
four components of size 10, would have at least 108 layouts
to test. Hence, the search time increases exponentially with
the length of the sequence, reaching times above 15 min per
module per sequence to find a k-way junction in a sequence
of length 200.

For this comparison, we define the search time as the time
elapsed between the start of the sequence scanning and the
output of the potential module locations.

The time comparison in Figure 4 demonstrates that the
constant cost of folding a certain number of sequences for
each test represents a significant time loss for hairpin min-
ing, as a large majority of the search time is spent folding.
However, both methods are very fast for that task, and the
absolute loss in performance is marginal. The speed of the
regular expression search method starts compensating for
the folding cost at internal loop search, for which Baye-
sPairing is significantly faster, and reaches its full poten-
tial when predicting k-way junctions, which BayesPair-
ing is the only software to predict in close to linear time.

Sensitivity. For the sensitivity comparison, both softwares
were set to a comparable level of high sensitivity, predicting
between 0 and 100 candidates for RMDetect, and between
0 and 15 for BayesPairing, with no floor on the overall
score, nor the base pair probability score. The only require-
ment was that the considered candidate had to be within 10
points of the best candidate (both softwares have a compa-
rable score scale). Both softwares were tested on up to five
sequences from the test set based on how many were avail-
able, for each of the 47 modules in the comparison. A soft-
ware requiring more than 15 min to predict a single module
on a 200 nucleotides sequence could not be used in practice.
RMDetect not having a timer and being able to reach up
to 140 000 s on a single query required the addition of a 15
min timer, after which the software was judged unable to
predict the module. The average for each software, for each
module, for each category is presented in Figure 5.

Out of those 47 modules, BayesPairing outperforms
RMDetect on 28, and is outperformed on 2, as shown by

the overall score distribution. It is to be noted that both soft-
ware produce similar results on modules that are well-suited
for identification. The extra sensitivity of BayesPairing
allows it to catch insertion candidates that would not be a
perfect secondary structure insertion match. It is also able
to model modules that are not continuous in sequence, al-
lowing it to outperform RMDetect on very flexible RNA
3D Motif Atlas modules and on k-way junctions. An
interesting side result is that BayesPairing appears to
perform better on low score modules than on average ones.
This is an artifact of the validation method; most of the
modules that received a score of zero were severely punished
by leave one out cross-validation, and were predicted much
more accurately when the tested sequence was part of the
model in real-life use.

Overall, it appears the sensitivity cost that could be as-
sociated with the regular expression method is mostly non-
existent, as BayesPairing is definitely not less sensitive
than the state of the art on the two datasets presented.

Identification of known modules

In the previous section, we have presented cross-validation
results for BayesPairing, as well as a comparison to
RMDetect in a context of identification. Since this tool is
meant to be used in de novo methods, we performed ad-
ditional tests in a context of prediction on untouched se-
quences, or sequences that were in no way involved in learn-
ing the model. Important RNA 3D modules are found in
different biological contexts, but remain quite similar in
structure. As a consequence, our software should be able
to learn a module model from a Rfam alignment of some
family containing the module, and then find signal for this
module on a distinct family that is also known to contain
that RNA module. To illustrate the potential application
of BayesPairing to module search for 3D structure im-
provement, we used two well-known modules for this exper-
iment, kink-turn 1 (Rfam motif family 10) and the Sarcin-
Ricin loop (Rfam motif family 18). All families for which
Rfam listed a PDB structure containing the module (as of
December 2018) were used to build a model, which was then
tested on other families, from which no structure nor se-
quence came into the learning of the model. For Sarcin-
Ricin loops, those two families are RF02540 and RF02541,
homologs of the ribosomal large subunit, respectively in ar-
chaea and bacteria. For the kink-turn, those are RF02540
and RF00162, the latter regrouping SAM riboswitch se-
quences. Because family RF02541 has many sequence ex-
amples and is known to contain kink-turns, the models
learnt on the two other families were also tested on that
one, although no models were learned on it due to the lack
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Figure 4. Search time comparison between RMDetect and BayesPairing for four different categories of modules. Search time includes the time between
the start and the sequence scanning, and the output of the insertion sites.

Figure 5. Sensitivity comparison between RMDetect and BayesPairing for five categories of modules, representative of the variations within the two
datasets.

of a listed kink-turn structure of that family. The threshold
used for calling a positive was set at a score of 15.7 associ-
ated with a false discovery rate of 0.10. Results were also
provided for a much higher threshold of 21.6, associated
with a FDR of 0.01. Identification results on sequences of
the family on which the model was learned were also in-
cluded, with leave-one-out cross-validation. Despite noisy
data (there are slight differences in the sequence signature

of same modules between family, so learning a module over
alignments of multiple families is strongly recommended),
BayesPairing can find a signal on new sequences for
all families, for both modules, with prediction accuracies
ranging from 0.35 to 0.91. Those results are detailed in Ta-
bles 2,3 for the Sarcin-Ricin loop, and Tables 4,5 for the
kink-turn. Interestingly, the kink-turn models learned re-
spectively from the SAM riboswitch and the archaea ribo-
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Table 2. Sarcin-Ricin loop predictions on two Rfam families of large ri-
bosomal subunit, with call threshold 15.7 (FDR = 0.10)

Trained on RF02540 RF02541

RF02540 0.932 0.912
RF02541 0.875 0.892

Table 3. Sarcin-Ricin loop predictions on two Rfam families of large ri-
bosomal subunit, with call threshold 21.6 (FDR = 0.01)

Trained on RF02540 RF02541

RF02540 0.920 0.902
RF02541 0.807 0.882

Table 4. Kink-turn loop predictions on the SAM riboswitch and twoRfam
families of large ribosomal subunit, with call threshold 15.7 (FDR = 0.10)

Trained on RF00162 RF02540 RF02541

RF00162 0.966 0.647 0.833
RF02540 0.503 0.960 0.843

The module was not trained on RF02541 due to the lack of a structure.

Table 5. Kink-turn loop predictions on the SAM riboswitch and twoRfam
families of large ribosomal subunit, with call threshold 21.6 (FDR = 0.01)

Trained on RF00162 RF02540 RF02541

RF00162 0.921 0.353 0.602
RF02540 0.467 0.922 0.739

The module was not trained on RF02541 due to the lack of a structure.

some perform better on the bacterial ribosomal large sub-
unit than on each other, which tends to indicate there is
enough variation in the module signal between these fam-
ilies for those results to be significant. The full details of
this investigation, as well as a more in-depth description of
our validation methods, can be found in the Supplementary
Data.

DISCUSSION

Main contributions

The central contribution of this work is the identification
of the location of k-way junctions from an input RNA
sequence. The overall significant gains in speed allow for
genome-wide scanning of sequences for a wide variety
of modules. BayesPairing provides the automation re-
quired to take full advantage of this opportunity. The level
of customization allowed is also an improvement on RMDe-
tect, as users can upload any dataset from a single to hun-
dreds of modules. BayesPairing is more user-friendly
than its alternatives because it can be run from input to out-
put with a single command.

Applications

The most natural application for BayesPairing is to
search new sequences for known modules in order to drive
more accurate 3D structure prediction (see the ‘Results’ sec-
tion). However, the possibility of designing custom mod-

ules can be utilized for searching sequences for any local 3D
structure signal. A common example of such a search would
be to mine genomes for riboswitches, for instance signal re-
lated to the thiamine pyrophosphate (TPP) riboswitch. In
such a pipeline, the user would identify recurrent local inter-
actions in structures of this riboswitch, encode them as 3D
modules with BayesPairing and then use those models
to search new sequences for similar local structures. Given
that a probabilistic score threshold for calling a module with
high sensitivity would be associated with a false discovery
rate of 0.10 to 0.15 (see Figure 2 and Supplementary Data),
identifying a single module would likely not be sufficient to
draw conclusions. However, BayesPairing can combine
the search for multiple modules associated with the TPP ri-
boswitch and, for instance, combining secondary structure-
based search methods with the identification of two mod-
ules in an input sequence could warrant further investiga-
tion. A current method for parsing genomes for modules
right now is with infernal’s cmbuild (20). While cmbuild is
a very strong discovery tool, it focuses on secondary struc-
ture and misses out on module information. In that con-
text, combining it with a module prediction tool like Baye-
sPairing is ideal for riboswitch mining.

The TPP riboswitch contains two recognizable modules
that occur in all crystal structures of the complex: a very
conserved small hairpin of five nucleotides closed by a
trans Watson–Crick–Hoogsteen interaction, and a three-
way junction with two non-canonical base pairs and a spe-
cific set of stacking interactions. Learning two configura-
tions of the three-way junction from PDB structures and
the TPP riboswitch Rfam family, BayesPairing achieves
a postdiction accuracy of 81/109 with a probabilistic score
floor of 15.7, associated with a false discovery rate of 0.10.
The small hairpin, which is very conserved in sequence, is
detected correctly in 108 of the 109 sequences. Pushing the
threshold to 21.6, associated with a false discovery rate of
0.01, still yields a call for both modules on 43 of the 109 se-
quences, which indicates that BayesPairing is able to
capture a significant signal.

From here, we provide an example pipeline for search
genomes for a TPP riboswitch local structure signal. We
used cmbuild and cmsearch (20) to mine 51 mammal
genomes for a model based on the secondary structure of
the Rfam family. The 43 hits found were then searched with
BayesPairing for the two modules. One candidate was
found to have a call for both modules, and those two called
modules could be inserted into the Rfam family consensus
structure predicted by cmbuild. Figure 6 shows the two
modules inserted in the VARNA (21) representation of that
secondary structure. Running BLAST on this sequence to
find equivalents in other mammal genome yielded no sig-
nificant result. Further testing is required, but this example
workflow takes advantage of several levers to parse large
sequences for potential signal while efficiently filtering out
false positives, and could improve current methods for ri-
boswitch discovery, as well as other approaches associated
with local 3D structure. The details of this pipeline are avail-
able in Supplementary Data.
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Figure 6. BayesPairing prediction for two modules identified in TPP-
riboswitch crystal structures on a short sequence of the Megabat genome
(figure drawn with VARNA (21)).

Limitations

BayesPairing in its current form is a tool that is best
used in combination with other methods, as it focuses on in-
forming the user about the affinity of some input sequence
for some set of known modules. Thus, it needs to be com-
bined with a module discovery method to build a dataset.
Because it does not explicitly consider a single secondary
structure in its prediction (unless such structure is given as
input), it is best combined with tools like infernal for
genome parsing, or RNA-MoIP for structure building. In-
deed, basing predictions on ensemble free energy is a power-
ful and an efficient way of estimating structural affinity, but
it is not allowing the software to output a secondary struc-
ture with modules inserted like RNA-MoIP does. In partic-
ular, situations where distinct modules are predicted with
high confidence, but incompatible structure-wise because
they cannot appear jointly in the same secondary structure
are not yet handled by BayesPairing. This problem will
typically be handled by the software tool used jointly with
BayesPairing, either upstream by feeding it a secondary
structure (or simply the MFE structure) or downstream by
solving the problem of finding the optimal set of compati-
ble modules. For example, in the case of RNA-MoIP, this is
done by an integer programming framework.

A data-centric approach is only as good as its dataset; a
high-redundancy dataset that is not representative of the re-
ality of a module will not allowBayesPairing to perform
well when predicting that module on new sequences. The
size of the PDB dataset for RNA structure is also a strict
limitation, as we can only predict modules based on exam-
ples we have already observed. Fortunately, as new struc-
tures are crystallized and new module sampling methods
are developed, the performance of our software will keep
improving since it can take full advantage of future data.

The regular expression methods also come with limita-
tions, despite not performing worse in sensitivity than prior
work. The 3D signal does not naturally map well to a 1D

sequence, and some artificial adjustments, described in the
methods, are required to obtain a good sensitivity. However,
this sensitivity, while overall satisfying, varies between mod-
ules.

As we discover more structural modules that contain in-
teractions between helices, junction modules with many dis-
connected strands, and new RNAs featuring occurrences
of known modules with components very distant in se-
quence, alternative methods will have to be implemented,
because the small alphabet, combined with the very long
and very variable distance between components, will make
those modules impossible to predict accurately. It should be
mentioned that those modules also cannot be predicted ac-
curately by secondary-structure based methods, but this is
a bridge that cannot be gapped only by using regular ex-
pressions. Different levels of representation will need to be
combined to achieve an accurate prediction of long-range
interactions in RNA structures.

Another consideration is that overall, BayesPairing
and RMDetect are not designed to be optimal scoring
tools. A tool such as JAR3D that was fully designed for
scoring remains a superior scoring tool. However, scanning-
oriented and scoring-oriented methods can be complemen-
tary. For instance, JAR3D could be used downstream of
BayesPairing to optimize scoring on the candidates
highlighted by our software.

Future directions

BayesPairing is released as a downloadable software
used through command line, like RMDetect, but also as
a web-server. Sequence-wide prediction of RNA 3D struc-
ture can be greatly improved by an accurate identification
of 3D modules, since the secondary structures that are most
conserved in nature are generally the ones that contain 3D
modules. This characteristic of structures has already been
taken advantage of by RNA-MoIP (22), with the limitation
that only exact sequence matches were allowed. Thus, our
software could be used in combination with 3D structure
building software (23–27) to improve their predictions. An-
other potential use could be as a tool for sequence classifica-
tion. There are currently many tools to classify sequences by
sequence or structure motifs, but few of them take tertiary
structure information into account, even though that signal
appears likely to exist in RNAs with specific functions.

CONCLUSION

We presented a novel software for the identification of RNA
3D modules from sequence data only. It aims to improve
the accuracy of 3D prediction tools and facilitate functional
annotation of genomes.

We reported results indicating an important signal on
modules of various sizes and categories, from different
datasets. Inspired byRMDetect, this software proposes key
innovations that allow significant advancements in terms of
running time, accuracy, range of structures predicted and
customization.

Finally, the growth of experimental RNA structures, and
thus module databases, promises significant improvements
of the performance of these methods in terms of base pair
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identification accuracy, but also in the diversity of the archi-
tecture of predicted modules, a diversity that BayesPair-
ingwas designed to take full advantage of. These advances
will have the potential to fill the gap between current sec-
ondary and tertiary structure prediction tools.
BayesPairing has been released both as a stand-alone

python package and a web-server at http://bayespairing.cs.
mcgill.ca.

DATA AVAILABILITY

BayesPairing is freely available as a standalone python li-
brary and as a web-server at http://bayespairing.cs.mcgill.
ca.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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