
Figure 1. Key Results for Electrode Design and Its Influence on Photoelectrochemical Reduction

of Nitrogen

(A) Schematic illustration of electrode fabrication.

(B) Influence of a PTFE layer on the accessibility of water.

(C) Rate of NH3 formation (column diagrams) and faradic efficiencies (point plots) on a Au/TS

surface (orange) and on Au-PTFE/TS (purple) at a series of potentials over a 4 h time period.

Adapted from Wang and co-workers.7
�0.2 V versus RHE in the resulting

electrode.

This paper presents an encouraging

strategy for the micro-control of water
with controlled accessibility as a way

to enhance reactivity at electrode-cata-

lyst-reactant interfaces. A challenge

remains in generalizing the strategy to

optimize and further improve its overall
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energy efficiency as a way to compete

commercially with the already well es-

tablished HBP.
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In this issue of Chem, El-Zohry et al. employ a novel time-resolved electron

microscopy technique to report that photoinduced charge-carrier diffusion

on a semiconducting cadmium telluride single-crystal surface exhibits unusual

features that are not only distinct from those of the bulk crystal but also consid-

erably dependent on the crystal facet orientation.
Since the discovery of the photoelectric

effect, the prospect of using light to

create labile electrons has captured

the imagination of many scientists.

The key to the success of
–504, March 14, 2019 ª 2019 Elsevier Inc. 497
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Figure 1. Facet Dependence of Photogenerated Charge-Carrier Diffusion Behavior on a

Cadmium Telluride Single-Crystal Surface
optoelectronic devices, such as solar

cells, which are inspired by natural

photosynthesis, lies mainly in the effi-

ciency and skill with which photoin-

duced charge carriers generated in

semiconductor materials can be intelli-

gently manipulated for useful exploita-

tion.1 It often helps to view the overall

performance of such devices in terms

of several constituent processes,

including charge-carrier generation,

i.e., electron-hole pair (exciton) crea-

tion, in photoactive materials upon

impingement of light; their mutual sep-

aration into free charge carriers; and

their eventual diffusion toward elec-

trodes for extraction.2

Although the surface mobility of charge

carriers is an intriguing aspect of device

performance, it is a much less explored

phenomenon than diffusion in the bulk.

Experimental techniques endowed with

high spatial and temporal resolutions,

such as time-resolved optical micro-

scopy, are a good choice for such inves-

tigations. However, the relevant signals

in such studies can originate from sam-

ple depths that are dependent on the
498 Chem 5, 494–504, March 14, 2019
wavelengths of the optical excitation

and the probe laser beam used.3

Although one-photon and two-photon

excitation schemes have been utilized

to differentiate between contributions

from the surface and the bulk, the thick-

ness of the relevant ‘‘surface’’ in such

cases can range from a hundred nano-

meters to a few microns.4

In this issue of Chem, El-Zohry et al.

employ a novel analytical technique

called four-dimensional scanning ultra-

fast electron microscopy (4D-SUEM) to

report some unusual charge-carrier diffu-

sion behavior encountered on semicon-

ductor surfaces, namely, different facets

of a cadmium telluride (CdTe) single crys-

tal.5 This method typically mimics con-

ventional laser-based ultrafast pump-

probemeasurement protocols but differs

from other methods in the use of pulsed

photoelectrons as the probe pulse. The

use of pulsed probe photoelectrons

instead of photon pulses drastically im-

proves the spatial resolution because of

the DeBroglie wavelength of the acceler-

ated electrons under a strong field.6

Additionally, the relevant signal (second-
ary electrons) in their measurements

essentially originates from the first few

nanometers of the sample surface, which

allows the authors to observe photogen-

erated charge-carrier diffusion with un-

precedented surface selectivity.7 This

technique has recently been successful

in gaining surface-selective insights into

charge-carrier diffusion of a wide variety

of photoactive materials, such as indium

gallium nitride nanowire arrays and cop-

per indium gallium selenide nanocrystal

films.8

For their investigation, the authors chose

single crystals of CdTe, which is a semi-

conductor material of considerable inter-

est to the solar-cell research community

and is preferred for its low cost yet signif-

icant power conversion efficiency.9 CdTe

single crystals with three crystal facets

(namely, {110}, {111}, and {211}) were

studied; each was characterized, as per

density functional theory (DFT) calcula-

tions, by distinct polarization properties

that originate from the unique bonding

and termination environment of their

topmost surfaces. The samples were

photoexcited by an optical pump pulse

with 2.4 eV energy, and the subsequent

evolution of the time-resolved secondary

electron contrast images was processed

for the generation of 2D false color plots

of the different images at various timede-

lays between the pump and the probe

pulses.

Their 4D-SUEM measurements were

limited to a time window of 6 ns

because of constraints in their setup;

however, they offer several interesting

results. These include the observation

of carrier diffusion over a scale of

several tens of microns, which the au-

thors aptly term super diffusion. In addi-

tion, by analyzing the kinetic traces of a

few selected coordinates along the

contour of the data plots, they reported

fast diffusion components that were a

few hundred picoseconds in duration.

Using these two parameters, they

were able to evaluate the diffusion co-

efficients by assuming a simple 2D



diffusion model. In particular, for the

{110} and {111} facets, they estimated

diffusion coefficients that were approx-

imately four orders higher than those

reported for the bulk.10 The {111} facet

provided smaller diffusion length and

diffusion components than {110}; how-

ever, these were still substantially

higher than those in the bulk. In stark

contrast, the scenario was found to be

very different for the {211} facet, which

was characterized by trapping dy-

namics rather than facile diffusion of

the photogenerated charge carriers as

a result of its greater propensity to

become oxidized and generate surface

trapping sites.

Interestingly, their Hall measurements

provided bulk diffusion coefficient

values that were of similar order irre-

spectively of the facet orientation.

This highlights the fact that the au-

thors provide novel evidence as to

how crystal facets and their surface

termination assume important roles

(very distinct from those of the bulk)

in dictating diffusion behaviors (Fig-

ure 1). The present study offers the
fascinating prospect of modulating

charge-carrier mobilities by suitable

facet engineering. Although directly

relevant to a plethora of optoelec-

tronic devices involving inorganic

semiconductors, the insights from

this study can be well extended to

several other photoactive materials,

including but not limited to soft con-

ducting polymers that form the basis

of organic photovoltaics.
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Reversible CO2 Sequestration
by Precipitation from Water
via an Organic Sorbent
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CO2 capture by chemical methods is highly energy intensive and costly; there-

fore, more efficient sorbents and more cost-effective technologies are needed.

In this issue of Chem, Custelcean and coworkers describe a CO2 sorbent that has

several significant advantages over the benchmark sorbent in use today.
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For at least 2.1 million years prior

to c. 1760, when the Industrial Era

began, the concentration of atmo-
spheric CO2 ranged between approxi-

mately 180 and 290 ppm.1 Large

amounts of anthropogenic CO2 emis-
sions after c. 1760, mostly from burning

fossil fuels and land-use changes,2 re-

sulted in a continuous and accelerating

increase in the atmospheric CO2 con-

centration, exceeding the upper limit

considered safe (350 ppm3) in the late

1980s.4 Although the contribution of

CO2 to the greenhouse effect was

quantified by Svante Arrhenius well

over a century ago,5 and despite

studies hinting at the possibly cata-

strophic consequences of global warm-

ing to life on Earth, humanity overall has
–504, March 14, 2019 ª 2019 Elsevier Inc. 499
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