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Entropy production (EP) is known as a fundamental quantity for measuring the irreversibility of
processes in thermal equilibrium and states far from equilibrium. In stochastic thermodynamics, the
EP becomes more visible in terms of the probability density functions of the trajectories of a particle
in the state space. Inspired by a previous result that complex networks can serve as state spaces,
we consider a data packet transport problem on complex networks. Entropy is produced owing to
the complexity of pathways as the packet travels back and forth between two nodes. The EPs are
exactly enumerated along the shortest paths between every pair of nodes, and the functional form
of the EP distribution is determined by extreme value analysis. The asymptote of the accumulated
EP distribution is found to follow the Gumbel distribution.

I. INTRODUCTION

The concept of entropy production (EP) has received
increasing attention recently as nonequilibrium phenom-
ena have become a central issue in statistical physics [1–
4]. The EP is the amount of uncompensated heat di-
vided by the temperature in irreversible processes. This
quantity corresponds to the work dissipated during irre-
versible process. The fluctuation theorem (FT) of EP
in the nonequilibrium steady state was established in
Refs. [5–7]. Crooks [8], Jarzynski [9], and others devel-
oped the FT for the dissipated work associated with other
physical quantities such as the free energy. After the FT
was first proposed for thermal systems, further studies
were performed to obtain more general FTs and deeper
understanding [10, 11]. As a result, EP could be viewed
microscopically in terms of the trajectories of a single
particle [12, 13]. The EP was defined as the logarithm
of the ratio of the probabilities that a dynamic process
proceeds in the forward and backward directions between
two states in a nonequilibrium system [10, 13]. The EP
distribution is formed as the integral of those EPs over all
possible states and trajectories. FTs such as the integral
FT and detailed FT were derived [1].

Even though the EP is well defined formally as de-
scribed above, it is rarely shown explicitly, because the
trajectories of a particle in the state space are virtual,
and the number of trajectories increases exponentially as
the number of steps is increased. Here we note that com-
plex networks can serve as state spaces. For instance,
each node in a protein folding network represents a pro-
tein conformation, and two nodes are connected by a link
when a protein conformation is changed to another in
consecutive steps [14]. Thus, we consider a data packet
transport problem on complex networks to obtain the
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EP distribution explicitly. Suppose that a data packet is
sent from one node to another on a complex network such
as the Internet. At each time step, the packet is trans-
mitted to a neighbor according to the router protocol
at each node toward the final destination. Unless traffic
is congested, packets generally travel along the shortest
path between a starting node and a final destination.
Recent studies using molecular dynamics simulations re-
vealed that in protein folding dynamics, there exist a few
major pathways involving multiple folds from denatured
states to the natural state [14, 15], in disagreement with
Levinthal’s perspective [16]. Thus, the folding dynamics
may proceed as biased random walks along the shortest
pathway on the conformation network. Thus, it makes
sense to consider only the case in which the packet is
transmitted along the shortest pathways to the final des-
tination.

Owing to extensive research in network science during
the past two decades, an efficient algorithm for identi-
fying every possible shortest path between any pair of
nodes was developed, which has the computational com-
plexity O(N2 logN), where N is the network size [17–19].
Thus, the exact EP distribution can be obtained as long
as the transport is confined to the shortest pathways.
On the other hand, the flow along the shortest pathways
on complex networks was used to quantify a person’s in-
fluence in society [18] and the load on a router on the
Internet [20].

We first integrate the EP induced by topological diver-
sity of every shortest pathway as each pair of nodes sends
and receives a data packet on a given network [20]. This
dataset is complete in the sense that the data are ob-
tained from every possible shortest pathway. Thus, the
EP distribution consists of N(N − 1) EPs.

Next, we perform extreme value (EV) analysis [21] to
determine the functional form of the asymptotic behav-
ior of the EP distribution, called an asymptote. This
method was originally developed to predict the probabil-
ity of rare events such as floods of a certain level, for in-
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stance. To perform this EV analysis, we use the theorem
that states that the functional form of the asymptote of a
distribution is related to the distribution of the maxima
of samples selected randomly from the original N(N −1)
elements [21]. Using this property, we find that the Gum-
bel distribution is the best fit to the asymptote of the
n-th power of the accumulated EP distribution. More-
over, the Gumbel distribution seems to be common to
other similar distributions obtained from different com-
plex networks. On the basis of this result, we assert that
the EP distribution behaves asymptotically.

Networks are a platform for interdisciplinary studies.
The nodes and links of a network represent routers and
optical cables on the Internet, web documents and hyper-
links on the World Wide Web, and individuals and social
interactions in social networks [22]. It was found that
most complex networks in the real world are heteroge-
neous in the number of connections at each node, called
the degree. Their degree distributions follow a power-
law or heavy-tailed distribution. Because the exponent
λ of the degree distribution Pd(k) ∼ k−λ is in the range
2 < λ ≤ 3, they are called scale-free networks. On the
other hand, a random network introduced by Erdős and
Rényi (ER) has a degree distribution following the Pois-
son distribution. We have considered the data packet
transport problem on diverse types of model networks
and find that the Gumbel distribution seems to fit all
scale-free networks well.

This paper is organized as follows. In Sec. II, we in-
troduce an EP induced by the topological complexity of
the shortest pathways on networks. In Sec. III, we show
that the total EP obtained from every shortest pathway
satisfies the integral FT and the detailed FT (Sec. IIIA
and Sec. IIIB, respectively). In Sec. IV, we obtain the EP
distribution for several model networks numerically. In
Sec. V, we determine the functional type of the asymp-
tote of the accumulated EP distribution using the EV
approach. We confirm that the asymptote follows the
Gumbel distribution. A summary is presented in Sec. VI.

II. EP ON NETWORKS

We consider data packet transport from a source node
i to a target node j along a shortest pathway α. The
packet returns along the same pathway α from node j to
node i. Thus, the time-forward trajectory and its corre-
sponding time-reverse trajectory are the same. However,
the probabilities to take that trajectory in each direction
can be different. For this type of transport, the EP is
defined as follows:

∆Sαi→j = ln
[PF

i→j,α
PB
j→i,α

]
= ln

[ρs(i)ρ(j|i)Πα
i→j

ρt(j)ρ(i|j)Π̃α
i→j

]
, (1)

where PF
i→j,α [PB

j→i,α] denotes the probability that trans-
port occurs along the pathway α in the forward (back-
ward) direction; ρs(i) [ρt(j)] denotes the probability that
node i (j) is selected as a source (target); and ρ(j|i)
[ρ(i|j)] is the conditional probability that node j (i) is
chosen as a target, provided that node i (j) is chosen as
a source. In this problem, ρs(i) = ρt(j) = 1/N , because
the node is selected randomly from among N nodes. The
conditional probability is ρ(j|i) = ρ(i|j) = 1/(N − 1) be-
cause the node j is randomly selected from N − 1 nodes
excluding node i. Πα

i→j (Π̃α
i→j) is the transition proba-

bility from node i to node j along the shortest pathway
α in the forward (backward) direction. In this paper,

Π̃α
i→j is found to be the same as Πα

j→i. Thus, we denote
the transition probability in the backward direction as
Πα
j→i. We will show that Πα

i→j can differ from Πα
j→i ow-

ing to the topological diversity of the shortest pathways
on complex networks. Thus, the EP can be nonzero.

We consider a simple example to explain how to
calculate the transition probabilities in the forward and
backward directions. Fig. 1 is a subgraph of a network
showing the shortest pathways between two nodes, s
and t. There exist three shortest pathways, which are
denoted as α, β, and γ, with three hopping distances.
Let us first consider packet transport along the pathway
α in the forward direction from a to g. A packet starts
to travel from a toward node g. At node a, the packet
needs to choose either node b or node c, which we assume
are chosen with equal probability, as the site of the next
step. Thus, hopping from a to b occurs with probability
1/2, as does hopping from a to c. Next, it chooses node
d with probability 1/2, because the pathway is divided
into two possibilities. Thus, the packet arrives at node
d with probability 1/4. Then it travels to the target t
without any branching, i.e., with probability one. Ac-
cordingly, the transition probability along the pathway

α is given as Πα
a→g = a

1/2−−→ b
1/2−−→ d

1−→ g = 1/4. On
the other hand, when it returns from node g to a along

the same pathway α, Πα
g→a = g

1/3−−→ d
1−→ b

1−→ a = 1/3.
Thus, the two transition probabilities are not the same:
Πα
a→g 6= Πα

g→a. Further, ρs(a) = ρt(g) = 1/N , and
ρ(j|i) = ρ(i|j) = 1/(N − 1). Thus, ∆Sαa→g = ln(3/4).
Accordingly, a nonzero EP is obtained in packet trans-
port along the pathway α. The EPs along the pathways
β and γ can be similarly calculated and are listed in
Table I. We can easily find that

∑
α Πα

a→g = 1 for any
pair (a, g), whereas Πα

a→g cannot be the same, as Πα
g→a

for each shortest pathway, α, β, and γ, for the sample
network shown in Fig. 1.



3

Pathway Forward pathway Πa→g Backward pathway Πg→a Entropy production

α a
1/2−−→ b

1/2−−→ d
1−→ g 1

4
g

1/3−−→ d
1−→ b

1−→ a 1
3

ln 3
4

β a
1/2−−→ b

1/2−−→ e
1−→ g 1

4
g

1/3−−→ e
1−→ b

1−→ a 1
3

ln 3
4

γ a
1/2−−→ c

1−→ f
1−→ g 1

2
g

1/3−−→ f
1−→ c

1−→ a 1
3

ln 3
2

TABLE I. Probability that a packet takes each pathway in the forward and backward directions and entropy production

1 2
 

2 3

 
 
 

1 1
 

4 3

 
 
 

1 1
 

4 3

 
 
 

1 1
 

4 3

 
 
  1 1

 
4 3

 
 
 

1 1
 

2 3

 
 
 

1 1
 

2 3

 
 
 

1 1
 

2 3

 
 
 

𝒂

𝒃

𝒄 𝒇

𝒅

𝒈

𝒆

𝒂

𝒃

𝒄

𝒅

𝒆

𝒇

𝒈

𝒂

𝒃

𝒄

𝒅

𝒆

𝒇

𝒈

𝜶: 𝒂 → 𝒃 → 𝒅 → 𝒈
𝜷: 𝒂 → 𝒃 → 𝒆 → 𝒈
𝜸: 𝒂 → 𝒄 → 𝒇 → 𝒈

𝒔

𝒕

𝒕𝒔

(a) (b)

FIG. 1. (a) Sample network to illustrate the EPs along each
shortest path from a to g and shortest return path from g
to a. For pathway α, a data packet starts along the pathway
a→ b→ d→ g and returns in the backward direction. (b) At
node a, there are two ways to move toward node g with equal
probability. The packet takes the link a→ b with probability
1/2. Next, it takes the link b → d with probability 1/2.
The link d → g is taken with probability 1. Accordingly,
the transition probability along the pathway α, denoted as
Πα
a→g, is found to be 1/4. In the backward direction, the

transition probability Πα
g→a is found to be 1/3. Table I shows

the transition probabilities along each shortest pathway in the
forward and backward directions.

III. FLUCTUATION THEOREMS

A. The integral FT

The total EP of the system for transport of a data
packet between every pair of nodes (i, j) along all the
shortest pathways is written as

〈∆Sαi→j〉 =
∑
i

∑
j 6=i

∑
α

∆Sαi→jP
F
i→j,α. (2)

We find that this total entropy satisfies the so-called in-
tegral FT in the following way.

〈e∆Sαi→j 〉 =
∑
i

∑
j 6=i

∑
α

PF
i→j,αe

−∆Sαi→j

=
∑
i

∑
j 6=i

∑
α

ρs(i)ρ(j|i)Πα
i→j

ρt(j)ρ(i|j)Πα
j→i

ρs(i)ρ(j|i)Πα
i→j

=
∑
j

∑
i 6=j

∑
α

ρs(j)ρ(i|j)Πα
j→i = 1. (3)

It is demonstrated that the integer FT holds by the nor-
malization of each factor.

B. The detailed FT

Here we obtain the EP distribution over all possible
shortest pathways between every pair of nodes. The EP
distribution PF(∆Stot) for a forward process from node
i to node j is given by

PF(∆Stot)

=
∑
i

∑
j 6=i

∑
α

δ(∆Stot −∆Sαi→j)ρs(i)ρ(j|i)Πα
i→j

=
∑
j

∑
i 6=j

∑
α

δ(∆Stot −∆Sαi→j)ρt(j)ρ(i|j)Πα
j→ie

∆Sαi→j

=
∑
j

∑
i 6=j

∑
α

δ(∆Stot + ∆Sαj→i)ρt(j)ρ(i|j)Πα
j→ie

∆Stot

= PB(−∆Stot)e
∆Stot , (4)

where we used ∆Sαi→j = −∆Sαj→i, and PB denotes the
EP distribution in the backward process. The relation
PF(∆S) = PB(−∆Stot)e

∆Stot is known as the detailed
FT and is an instance of the Gallavotti–Cohen symmetry
of the probability density function [7]. We confirm the
detailed FT numerically in Fig. 2. We drop the subindex
“tot” hereafter.

IV. NUMERICAL RESULTS

We perform numerical simulations to obtain EPs
based on transport along every shortest pathway be-
tween all possible pairs of nodes on several networks: the
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FIG. 2. Plot of the detailed FT. The ratio of the EP distri-
butions in the forward and backward directions is equal to
e∆S . Numerical data are obtained from BA model networks
on which a data packet is sent and returned between every
pair of nodes along the shortest pathways. Data points lie
exactly on the straight line with slope one.

Barabási–Albert (BA) model [23], ER model [24], and
Chung–Lu (CL) model [25] with the degree exponents γ
= 2.2 and γ = 2.5. The EP distributions P (∆S) repre-
senting both PF(∆S) and PB(∆S) on these networks are
shown in Fig. 3. All these networks were constructed
with the same mean degree 〈k〉 = 8 and system size
N = 211 × 10. We obtain these EP distributions on the
giant component of each network. The EP distributions
have different shapes. The width of the EP distribution
on the BA model is generally wide, whereas that on the
ER model is generally narrow. This result arises from
the extent of the topological diversity of each type of
network.

10−16
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10−1

−10 −5 0 5 10

P
(∆

S
)

∆S

FIG. 3. EP distributions on the four model networks: BA
model, scale-free CL model with degree exponent γ = 2.2,
scale-free CL model with degree exponent γ = 2.5, and ER
model, from top to bottom. Data are obtained from the giant
component of each model network of system size N = 211 ×
10 and mean degree 〈k〉 = 8. They are averaged over 300
configurations. All EP distributions exhibit peaks at ∆S = 0,
which are attributed to transport along untangled pathways.

In statistical mechanics, the entropy is an extensive
quantity with respect to the system size N . However, in
this problem, the length dst of each pathway plays a role
similar to that of N in Euclidean space. Thus, we rescale
the EP ∆S by the path length and define ∆S/dst. The
EP distributions obtained for different network sizes N
collapse onto a single curve, as shown in Fig. 4.

FIG. 4. (a) EP distribution on BA networks of different sys-
tem sizes, N = 4096, 8192, 10240, 14336, and 20480. As N
is increased, the EP curves tend to converge to the asymp-
totic one. (b) Distribution of EPs divided by the Hamming
distance dst between a source (s) and a target (t) for each
pathway, that is, ∆S/dst. The system sizes are the same as
those in (a). The data for the different system sizes collapse
onto a single curve.

V. ASYMPTOTE OF THE EP DISTRIBUTION

To determine the functional form of the asymptote of
the EP distribution, we follow the Fisher and Tippett
method for EV analysis [26]. We consider the dataset
composed of Ne ≡ N(N − 1) EPs obtained from all the
shortest pathways between every pair of nodes of a given
network such as the BA model, for instance. Next, we
select ` elements randomly from among Ne elements and
construct a set. Repeating this construction m times, we
set up m sets of size `. Let us consider a distribution
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H({yi}) of the largest elements of each set i = 1, . . . ,m,
which is denoted as yi. Then the largest value among
{yi} (i = 1, · · · ,m) is the largest value of those `m el-
ements selected randomly from Ne, where the elements
are not necessarily distinct. To quantify this, we con-
sider the accumulated distribution of P (∆S), i.e., F (x) =
Prob{∆S ≤ x}, that is, F (x) =

∫ x
−∞ d∆SP (∆S). The

probability that the largest value yi of a set i of size ` is
less than x is given as F `(x). Next, the probability that
the largest value among those `m elements is less than x
is given as F `m(x). If there is an asymptote for large `,
F `(x) and F `m(x) would have the same functional form.
On the other hand, we recall the extreme value theory.
Let us define an asymptote G(z) as

G(z) ≡ Prob

{
M` − β`
α`

≤ z
}
, (5)

where M` is a random variable representing the maxi-
mum value from a set of size `. α` and β` are appropriate
sequences of ` to make the maximum value M` bounded
for general `. Then it is known that G(z) satisfies the
following stability postulate [21]:

Gn(z) = G(anz + bn). (6)

Using this postulate, we find the relation between
F `(x) and F `m(x): Because the stability postulate is the
ideal case as ` → ∞ limit, we try to find a finite ` such
that the following relation holds.

{F `(x)}m = F `(amx+ bm). (7)

We find empirically that for ` = 1000, am = 1 as shown
in Fig. 5(a), in which the guide curves (dashed curves)
shift in parallel for different ms. Next, we find bm ≈
−0.42 lnm as shown in the inset of Fig 5(b). Thus, we
write bm ≈ c lnm for large m with c = −0.42. These
imply that α` = 1 and β` ∼ ln ` in Eq. (??). Because of
Eq. (??), F `(x) = G(x− β`).

We determine the logarithm of G(x) as

− lnG(x) = e−
1
c (x−u), (8)

where u is measured to be u ≈ 1.49. The distribution
G(x) is known as the Gumbel distribution in the EV
theory.

The functional form of G(x) enables us to derive the
EP distribution using the relation,

P (∆S) =
dF `(x)

dx

1

`F `−1(x)

∣∣∣
x=∆S

, (9)

leading to

P (x) =
e−

1
c (x−u)

cee
− 1
c
(x−u)

x=∆S→∞−−−−−−−→ 1

c
e−

1
c∆S . (10)

We emphasize that this functional form was obtained us-
ing F `(x) in the large-` limit.

FIG. 5. (a) Test of the Gumbel distribution for the `-th power
of the accumulated EP distribution, F `(∆S), for BA model
networks of size N/10 = 211. Dot-dashed curves represent
F `(am∆S + bm) with ` = 1000, am = 1, and bm ≈ lnm. The
m values are taken to make n(= `m) = 102, 103, 5× 103, 104,
and 105 from left to right. Data points (symbols) are obtained
by exact enumeration. One can see that for n = 103 − 105,
dashed curves seem to be fit to the data points. (b) Plot of
ln(− ln(F `m(∆S))) versus ∆S to test am∆S+ bm for ` = 103

and m = 3, 6, and 9. Parallel alignment of data points for
different ms to the straight dash-dotted line implies am = 1.
Inset: Plot of bm versus 103 ·m on semilogarithmic scale.

We remark that this EP distribution function is
different from the recently derived work distribution
function, P (W ) ∝ exp(−W )/

√
W , in their functional

forms [27, 28].

VI. SUMMARY

In this paper, we considered the EP distribution aris-
ing from the complexity of the shortest pathways from
one node to another on complex networks. We showed
that this EP distribution satisfies well-known FTs, i.e.,
the integral FT and detailed FT. To obtain the result,
we considered a data packet transport problem in which
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a packet travels back and forth between every pair of
nodes along the shortest pathways. At a branching node
along the way, a packet chooses one branch randomly.
The effect of this random choice is similar to that of the
stochastic noise in the Langevin equation. Owing to the
complexity of the shortest pathways, the probabilities of
taking a shortest pathway in the forward and backward
directions are different, resulting in a nonzero EP. We
calculated this difference explicitly and determined the
functional form in the large-EP limit. This work is help-
ful for understanding the origin of the EP arising in the
Langevin dynamics with stochastic processes.
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