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General conditions for organic reactions are important but rare, and efforts to identify them usually
consider only narrow regions of chemical space. Discovering more general reaction conditions
requires considering vast regions of chemical space derived from a large matrix of substrates
crossed with a high-dimensional matrix of reaction conditions, rendering exhaustive experimentation
impractical. Here, we report a simple closed-loop workflow that leverages data-guided matrix
down-selection, uncertainty-minimizing machine learning, and robotic experimentation to discover
general reaction conditions. Application to the challenging and consequential problem of heteroaryl
Suzuki-Miyaura cross-coupling identified conditions that double the average yield relative to a
widely used benchmark that was previously developed using traditional approaches. This study
provides a practical road map for solving multidimensional chemical optimization problems with
large search spaces.

T
he development of automated synthesis
methods for peptides (1), nucleic acids
(2), and polysaccharides (3) required dis-
covery of highly general reaction con-
ditions applicable to a wide range of

building block combinations. In contrast, in the
synthesis of small organicmolecules, bespoke
reaction conditions are usually developed to
maximize the yield of each target molecule,
minimize side products, and/or minimize the
cost of the corresponding process. Reaction
optimization per target is often necessary be-
cause synthetic methods are typically opti-
mized on only one or a few pairs of substrates
and then applied to a wider range of substrate
combinations with the rarely fulfilled hope
that the same conditions will generally lead

to high yields (4). Even the application of ma-
chine learning to optimization protocols (5–9)
does not ensure generality, which is critical
for automating, accelerating, and ultimately
democratizing the small molecule–making
process. Identification of such general con-
ditions is difficult because the search space—
spanning all possible combinations of sub-
stratesmultiplied by all possible combinations
of reaction conditions—is enormous and
thus impractical to navigate using standard
approaches.
Heteroaryl molecular fragments are ubiqui-

tous inmany industrially relevant functional
molecules, including pharmaceuticals, mate-
rials, catalysts, dyes, and natural products. In
all of these spaces, synthesis remains a key

bottleneck. Finding general conditions for
(hetero)aryl Suzuki-Miyaura cross-coupling
(SMC) is therefore an important problem. It is
also a challenging and largely unsolved prob-
lem, primarily owing to variable degrees of
both desired and undesired reactivities across
the very large and diverse range of potential
heteroaryl and aryl substrates (10–12). We re-
cently attempted, but failed, to use machine
learning (ML) to discover general reaction
conditions by mining the extensive chemical
literature on (hetero)aryl SMC (13). This is
mainly because the choices of conditions re-
ported in the literature lacked causal links to
the substrates’ structures, and because of a
lack of published (or otherwise accessibly ar-
chived) negative results.
Here, we report a simple closed-loop work-

flow that can efficiently navigate vast substrate-
condition space to discover general reaction
conditions. The approach leverages: (i) data-
guided matrix down-selection to render the
vast search space tractable while retaining val-
idity to the whole; (ii) uncertainty-minimizing
ML to efficiently drive prediction optimization;
and (iii) robotic experimentation to increase
throughput, precision, and reproducibility of
datasets recursively generated on demand
(Fig. 1). We demonstrate that this workflow
succeeds in identifying general reaction con-
ditions for the (hetero)aryl SMC reaction. The
optimized solution doubled the average yield
compared with benchmark general conditions
that had previously been developed through
traditional human-guided experimentation
(hereafter referred to as JACS 2009) (14) and
that have since been used extensively in aca-
demic and industrial laboratories worldwide
(cited in >590 papers and patent applica-
tions). This approach can thus find powerful
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Fig. 1. Problem definition and substrate scope for generalized heterocyclic cross-coupling. Workflow
developed in this work for the discovery of general reaction conditions.
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solutions that lie in vast multidimensional
search spaces and stands to accelerate the
field of organic chemistry’s march toward auto-
mated and democratized small molecule syn-
thesis (15–28), which critically requires more
general reaction conditions.

Data-guided down-selection of substrates

Toenable practical pursuit of general hetero(aryl)
SMC reaction conditions, we first strategical-
ly down-selected both the matrix of possible
building block combinations and the matrix
of possible reaction conditions in a way that
preserved relevance of the subsets to their
wholes (Fig. 1). Specifically, we first data mined
the inventories of common fine chemical sup-
pliers and assembled a list of ~5400 (hetero)aryl

halide building blocks that were practically
purchasable and therefore accessible for
study [supplementary materials (SM) sec-
tion 4]. To define a representative subset of
this chemical space, we applied a stratified
clusterization strategy (fig. S21) to algorith-
mically cluster the building blocks by their
common (hetero)aromatic ring substructures
and pendant functionalities, down-selecting
54 “centroid”molecules most representative
of each section of the available chemical space.
Combining these molecules with a selection
of 54 commercially available (hetero)aryl
N-methyliminodiacetic acid (MIDA) boronates
defined a down-selected substrate scope com-
posed of 2688 representative cross-coupling
products (figs. S22 and S23). Mapping this

potential product space and comparing it to
all previously reported heteroaryl products
in the literature revealed substantial overlap
between both sets, suggesting that it is repre-
sentative of heteroaryl chemical space as a
whole (Fig. 2A). However, testing even this
initially down-selected collection of cross-
coupling products against many possible re-
action conditions is technically unfeasible.
Accordingly, we pursued a second layer of
down-selection. Specifically, we used a greedy
algorithm based on the Tanimoto similarity
(29) to identify from this larger collection a set
of 11 representative substrate pairs that max-
imize mutual dissimilarity of the resulting
products (Fig. 2B). For all of these products,
we determined liquid chromatography–mass

Angello et al., Science 378, 399–405 (2022) 28 October 2022 2 of 7

Fig. 2. Automated synthesis of the initial training set. (A) T-distributed
stochastic neighbor embedding (t-SNE) mapping of the substrate combinations
(2688 heteroaryl products) examined in this work versus all (hetero)aryl products
previously reported in the literature. Blue circles represent literature-reported
products, yellow stars represent products exclusively belonging in this reported search
space, and green triangles represent products present in both sets. (B) t-SNE
mapping of the product space synthesized during the training and test sets versus the
overall reaction space. Blue circles represent products belonging to the reported
search space, green triangles represent products belonging to the training set, and
yellow stars represent products belonging to the test set. (C) Reaction scheme and
chemical structures of the initial training set. Me, methyl; Et, ethyl. (D) Photo of the
automated synthesis instrument used in this work. (E) Initial training set with the

benchmark condition; all other common palladium catalysts reported in the
literature; and a condition with the most common catalyst [Pd(PPh3)4], base
(Na2CO3), temperature (100°C), and solvent (dioxane:water) used in the literature.
Yields are the average of two automated repetitions (±2% deviation), measured
by LCMS-UV/Vis with an authentic product standard (response factor to
phenanthrene; SM section 9). HPLC, high-performance liquid chromatography.
(F) Yield-based similarity between Pd-based catalysts differing only in organic
ligands. Each square quantifies the Spearman rank correlation coefficient between
yields obtained for each of the 11 substrate pairs. Two pairs of ligands (XPhos
and dppf, and SPhos and PCy3) were highly correlated and redundant. PtBu3,
tri-tert-butylphosphine; PCy3, tricyclohexylphosphine; dba, dibenzylideneacetone;
dppf, 1,1′-bis(diphenylphosphino)ferrocene.
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Fig. 3. Closed-loop experimentation and analysis. (A) Convergence of the
model’s uncertainty. Dashed horizontal line depicts threshold for �stotal � �strain
obtained in calibration simulations. The shaded areas correspond to 95%
confidence interval computed by repeatedly training the model 10 times.
(B) Comparison of ML-guided searches versus random searches for general
conditions. Simulations with both model selection policy [probability of

improvement (PI) in conditions space and maximum uncertainty (MaxUnc)
in substrate space for given conditions; abbreviated as PI:MaxUnc and
corresponding to green lines] and random selection of the next reactions
(red lines) were repeated 100 times to evaluate the random factor in the
algorithm (random initialization of neural network weights as well as selection
of the next step in the random baseline). The shaded areas mark the
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spectrometry ultraviolet/visible spectroscopy
(LCMS-UV/Vis) response factor curves, which
enabled us to automaticallymeasure the yields
of automated reactions (SM sections 8 and 9).

Data-guided down-selection of conditions

We considered four condition variables—
solvent, base, catalyst and ligand, and temper-
ature. As our aim was to test a broad range of
conditions, we initially down-selected repre-
sentatives of condition classes on the basis of
not only their extent of prior use from our
earlier comprehensive literature analysis (13)
but also structural and functional diversity.
For instance, whereas the twomost commonly
used solvents in the literature are dioxane and
dimethoxyethane, they both belong to the same
solvent class of ethers, and so we selected only
one of them (dioxane). Similar reasoning led
us to keep only one carbonate base [in (13), we
showed that the nature of the cation did not
alter the yields]. We selected 100°C as the most
frequently used temperature in the literature,
as well as 60°C, which was used in the pre-
viously developed benchmark protocol (14). In
the end, we selected three solvents (dioxane,
toluene, and dimethylformamide, all used in
5:1 mixture with water), two bases (sodium
carbonate and potassium phosphate), two
temperatures (60° and 100°C), and seven cat-
alysts [Pd SPhos G4, Pd(PPh3)4, Pd XPhos G4,
Pd P(tBu)3 G4, Pd PCy3 G4, Pd2(dba)3, and
Pd(dppf)Cl2; G4 refers to the fourth-generation
Buchwald precatalyst] to evaluate. The down-
selected 11 building block combinations de-
scribed above were tested under an initial set
of conditions to “seed” the ML optimization
(Fig. 2C) and then tested iteratively under a
much broader set of conditions during the
ML-guided optimization phase.

Seeding experiments, reaction standardization,
and conditions space

All reactions were performed automatically on
the robotic system shown in Fig. 2D. Before
solvent addition, heating, and stirring, reac-
tion mixtures were purged with 10 automated
vacuum and argon cycles, which led to highly
reproducible reaction yields (fig. S11). This
automated Schlenk process was necessary—
even when using air-stable precatalysts and
building blocks—for reproducibility. To “seed”
the optimization procedure, we performed all
couplings between the aforementioned 11 pairs

of substrates, each under seven different con-
ditions: those corresponding to the JACS 2009
benchmark (5:1 dioxane:water, 60°C, K3PO4,

Pd SPhos G4); same base and solvents but
with the other selected palladium catalysts
[Pd XPhos G4, Pd P(tBu)3 G4, Pd PCy3 G4,
Pd2(dba)3, and Pd(dppf)Cl2]; and a condition
with the most common catalyst [Pd(PPh3)4],
base (Na2CO3), temperature (100°C), and sol-
vent (dioxane:water) used in the literature
(Fig. 2E). When each reaction was repeated
twice, the yields exhibited only ±2% devia-
tion, underscoring one of the key advan-
tages of automated experimentation [indeed,
it has previously been reported (30) that
repetition of the same reaction even by the
same human experts entails variability of
∼10 to 15%].
This initial roundof experiments also allowed

us to identify catalysts that, for different sub-
strate pairs, systematically gave similar yields
and could thus be redundant. Such functional
rather than structural similarity is quantified
by the Spearman rankmatrix shown in Fig. 2F
and correlating yields obtained for all 11
substrate pairs using two different catalyst
ligands—in this representation, redundant
catalysts correspond to high-correlation, off-
diagonal elements (e.g., XPhos and dppf, or
PCy3 and SPhos). On the basis of this analysis,
we eliminated PCy3 and dppf from our pool of
ligands to decrease redundancy, and we elimi-
nated Pd2(dba)3 because of poor performance
(<5% yield for 8 of 11 substrates), yielding a full
space to be explored of 528 reactions (11 sub-
strates × 2 temperatures × 2bases ×3 solvents ×
4 catalysts).

Uncertainty-minimizing ML for generality

A reaction condition can be considered max-
imally general when it provides the highest
average yield across the widest range of chem-
ical space. Optimization for generality is an
unsolved and underexplored challenge in the
evolving field of ML. We thus considered an
alternative de novo approach, where small
sets of highly reproducible data are generated
on demand during ML-guided closed-loop
optimization, including negative data vastly
underrepresented in existing datasets. We
also decided to strategically focus theML algo-
rithm on decreasing model uncertainty and
thereby maximize the efficiency of the learn-
ing process.

Denoting the set of possible reaction con-
ditions as C = {c}, a set of substrate pairs as S =
{s}, and reaction yield as y(s,c), our aim is to
maximize the objective function given by

f cð Þ ¼ 1

Sj j
X

s∈S
y s; cð Þ ð1Þ

Then, the general conditions cgeneral are given as

cgeneral ¼ argmax
c∈C

f cð Þ ð2Þ

At first glance, the problem of identifying
cgeneral in the least number of experiments
resembles standard Bayesian optimization
(BO). However, there is a substantial differ-
ence: In all BO algorithms, each experiment
or measurement performed immediately pro-
vides information about the objective func-
tion desired for optimization. In contrast,
experimental evaluation of f(c) in our problem
requires multiple experiments (because sum-
mation in Eq. 1 runs over the entire set S)—that
is, determination of f (c) for given conditions
requires experiments with every pair of sub-
strates in the S set. To address this problem,
we modified the standard BO approach by
constructing a surrogate model for predict-
ing reaction yields, ŷ s; cð Þ. We then used its
predictions to estimate f̂ cð Þ according to
Eq. 1 and using the model’s prediction for
the yet-unperformed reactions. Note that in
standard BO, we would have observed f(c) for
the “seen” conditions and estimated for the
“unseen” ones; in our case, f(c) was estimated
even for the already-tested conditions, unless
the entire substrate space S had already been
tested. On the basis of these considerations,
the optimization over C (selection of the next
conditions to examine) is performed with stan-
dard BO techniques, whereas sampling of S is
achieved using an active learning approach—
each of these techniques is known on its own
(8, 31), but the combination of the two (where
the observation of the BO objective can be in-
complete) seems to be unknown. In particular,
we decided to choose substrate pairs on the
basis of the model’s prediction of uncertainty
for given substrates under given reaction con-
ditions: the highly uncertain (low-confidence)
predictions indicate missing information, and
providing the model with the corresponding
experimental data should decrease its uncer-
tainty the most.
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interquartile range. (C) Comparison of yield distribution between literature-
reported reactions and those explored in this work. (D) Color scale indicates the
percent yield per general condition as perceived by the ML model at the
conclusion of a given optimization round, 1 to 5. Along the horizontal axis,
the conditions are ranked according to the ML prediction after round 5.
(E) Ranking per general condition per round as perceived by the ML model.
(F) Uncertainty per general condition per round as perceived by the ML model

(computed from 10 repetitions). (G) Number of substrates tested per general
condition per round of closed-loop optimization. (H) Coverage of reaction
space tested by round 5 of closed-loop experimentation. A value of 1 indicates
that the condition was tested, and a value of 0 indicates that the condition
was not tested. (I) Distributions of yields measured and predicted prior to the
measurement for each round of closed-loop optimization. MAE, mean absolute
error; MSE, mean squared error.
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For uncertainty estimation, we sought a
model offering prediction uncertainty com-
mensuratewith prediction error—for instance,
highly confident predictions with high error
are undesirable. Per the analyses of numer-

ous neural-network (NN) andGaussian process
(GP) models (SM section 3), we ultimately
selected an ensemble of GP supplemented
with a NN kernel component [GPE(NN)]; sim-
ilar approaches were recently used in BO (32)

and interactive learning (33). Such a model is
particularly appealing because of its flexibil-
ity (the similarity metric between different
conditions will be learned from the data) and
the reliability of the prediction uncertainties
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Fig. 4. Test set for
ML-discovered reaction
conditions. (A) Set of
20 diverse compounds from
outside the training set
selected to test whether the
discovered general reaction
conditions translate to other
diverse heteroaryl product
classes. JACS 2009 condition:
5:1 dioxane:water, 60°C, K3PO4,

Pd SPhos G4.. ML General
condition 1: 5:1 dioxane:water,
100°C, Na2CO3, Pd XPhos G4.
ML General condition 2:
5:1 dioxane:water, 100°C,
Na2CO3, Pd SPhos G4. ML
general condition 3: 5:1
dioxane:water, 100°C, Na2CO3,

Pd(PPh3)4. ND, not detected.
(B) Jitter plot showing the
performance of the top
ML conditions versus the
benchmark. Brackets indicate
95% confidence interval.
(C) Jitter plot showing the
relative performance in
change of yield of the top
ML conditions versus the
benchmark. Brackets indicate
95% confidence interval.
(D) The number of products
per general condition with
>10% yield measured.
(E) Relative protodeboronation
per condition, as measured
by integrated UV peak area
(UVPDB) standardized to
the internal standard (UVSTD).
(F) Relative remaining halide
per condition, as measured by
integrated UV peak area
(UVHAL) standardized to the
internal standard (UVSTD).
(G) Relative product forma-
tion per condition (UVPDT)
relative to by-product forma-
tion (UVBYPDT).
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(e.g., it is guaranteed that the prediction of
a test sample will not be more confident
than a training sample). For the selection of
conditions to be tested, we chose as an acqui-
sition function the probability of improve-
ment (PI).

Closed-loop, ML-driven optimization with
robotic experimentation

The GPE(NN)/PI model guided the auto-
mated experiments over the down-selected
search space. We worked in experimental
batches, meaning that multiple experiments
were performed before the theoretical model
was updated. Within each batch, the algo-
rithm formed a “priority queue” of unexplored
reactions by sorting and selecting condi-
tions according to the computed PI and
substrate pairs according to the prediction
uncertainty. The batch size for rounds 1 and
2 of optimization was 36 duplicated reac-
tions, followed by 72 and 84 unduplicated
reactions for rounds 3 and 4 and round 5,
respectively.
Over the closed-loop rounds, the model’s

uncertainty decreased and converged at the
fifth round to the threshold obtained during
calibration simulations (Fig. 3A and fig. S20),
suggesting that the model gained sufficient
knowledge about the whole space, at which
point the optimization was terminated. This
strategy converges to this optimum in about
half asmany reactions asdoes randomsampling
(Fig. 3B) and with a higher likelihood of suc-
cess compared with typical BO strategies (fig.
S30). As the algorithm explored the reaction-
condition space, reaction yields for our data-
set were distributed more or less uniformly
over the range of possible values (Fig. 3C). In
other words, our protocol learned by probing
both low- and high-yielding conditions. This
contrasts with the distribution of yields in
published reaction sets—such yields are heavi-
ly skewed toward positive outcomes, which,
as we discussed inmany of our previous works
on computerized synthesis (34–36), limits the
usefulness of approaches aiming to learn from
published datasets.
In this dataset, the discovered top-1 condi-

tion conferred 72% average yield across all
11 substrates, whereas the benchmark condi-
tion [found to also be the top-5 (i.e., fifth best)
condition] conferred 64% average yield. To
understand how the model arrived at this op-
timum, we examined the model’s perception
of the average yield and ranking of each gen-
eral condition per round (Fig. 3, D and E).
Within the first two rounds, the model gains
the ability to accurately categorize these con-
ditions into high, medium, and low overall
average yield and, in the subsequent rounds,
establishes the correct ranking within these
categories. The increasing accuracy of the
model over the course of the experiment is

recapitulated in Fig. 3F, which shows the
model’s ranking uncertainty decreasing be-
tween rounds and is especially apparent for
the top conditions. The model chose to test a
few substrates per round across many con-
ditions for the first three rounds, followed by
primarily filling in the top conditions in the
latter rounds (Fig. 3G). By the fifth round, the
model explored nearly all of the top-7 con-
ditions, which corresponds to every condition
with >50% overall average yield, as estimated
by the model (Fig. 3H).
Finally, we analyzed the yields of reactions

the model requested in order to gain more in-
formation about the reaction-condition space
(Fig. 3I). These values are not expected to in-
crease as the optimization progresses, because
the yield of a single experiment is not our
objective. Given the uncertainty-guided selec-
tion of substrates, one could even expect the
opposite: Once a set of suitable conditions is
identified, further exploitation should in-
volve lower-yielding reactions to verify that
the found candidate conditions are indeed
better, as well as to increase confidence of the
estimate of f (c). The results shown in Fig. 3I
indicate that after exploring good reactions
in the second iteration, the model gradually
shifted its attention toward the parts of the
reaction-condition space that can be consid-
ered as “negative examples” (and, in doing so,
improved its prediction accuracy). From these
results, it appears that (i) relatively good can-
didate solutions were identified early, (ii) the
model initially tried to look for better-yielding
reactions (to find better candidates), and (iii)
more and more attention was dedicated to
decreasing the uncertainty of its estimates as
the “loop” progressed.

Quantifying generality

After the discovery of higher-yielding gen-
eral conditions in the training set, we next
sought to determine whether the learning
would transfer to substrates outside of the
optimization—specifically, over 20 substrate
pairs chosen [by the Butina algorithm (37)]
to maximize dissimilarity to the training set
while ensuring coverage of the heterocyclic
substructure and functional group space (Fig.
2B). We then set out to synthesize and purify
all of the computer’s suggestions and test them
against the benchmark condition and the top-3
highest yielding general reaction conditions
discovered during the closed-loop optimiza-
tion (Fig. 4A), as ranked by the model after
the completion of round 5. Despite including
some very challenging building block combi-
nations, this process was 95% successful, with
only one product having no measurable yield
under all four conditions.
The ML-discovered general reaction condi-

tions performed substantially better than the
previously reported and widely used bench-

mark condition (14). The top-2 conditions
provided statistically significant increases in
average yield compared with the benchmark,
with the top condition doubling the overall
average yield from 21% to 46% (Fig. 4B). Com-
paring the relative increase in yield reveals
statistically significant differences between
the top-1 and both the top-2 and top-3 con-
ditions (Fig. 4C). Notably, the experimental
yields correlate with the predicted ranking
of the conditions such that the yield for the
top-1 is higher than that for the top-2, which,
in turn, is higher than that for the top-3. In
the context of functional discovery efforts, the
binary capacity to isolate or not isolate testable
quantities of purified targeted compounds is
arguably even more important than the spe-
cific percent yield. We estimate that the prac-
tical limit for isolating purified products is
10% yield. For the benchmark condition, only
11/20 targeted products cleared this bar, whereas
this fraction rose to 19/20 for the top-1 condi-
tion (Fig. 4D).
Extending the reaction times for couplings

that were low yielding under the benchmark
conditions did not increase yields (fig. S33).
Comprehensive analysis of by-products and
product formation for all 20 reactions (SM
section 10) demonstrated that a favorable
shift from the former to the latter accom-
panies the shift from the benchmark to theML-
discovered reaction conditions. Specifically, the
ML-discovered conditionswere associatedwith
a trend toward decreased protodeboronation
(Fig. 4E), increased halide conversion (Fig. 4F),
and an overall statistically significant increase
in the ratio of product to total by-products
formation (Fig. 4G) (0.30 ± 0.12 for JACS
2009 versus 0.58 ± 0.12 for ML conditions;
P = 0.0005).

Outlook

The straightforward workflow developed here
has enabled the accelerated discovery of im-
proved general reaction conditions for diffi-
cult C–C bond forming reactions, representing
a key step toward increasing the efficiency,
generality, and accessibility of small molecule
synthesis. This result also highlights the power
of down-selection as an entry point into large
multidimensional search spaces, the distinct
advantages of a de novo ML approach for
navigating such spaces by generating datasets
that evenly reflect the reality of positive and
negative data during optimization, and the
particular suitability of robotized chemistry
for generating high-quality, reproducible data.
Future studies will incorporate next-generation
ligands and reagents to yield further improved
general reaction conditions, creating an ac-
tionable path for automated small molecule
synthesis to achieve reaction efficiencies ap-
proaching that of automated peptide synthesis.
This general workflow should be applicable to
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the optimization of reactions beyond SMC, as it
did not require extensive prior literature data
to be successful.
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Better navigation in chemical space
Chemists typically discover reactions using a small set of relatively similar starting compounds. The conditions that
work best for those compounds then get applied to numerous other, often dissimilar, compounds even if alternate
conditions might improve outcomes. Angello et al. developed an iterative protocol of machine learning and automated
synthesis to improve the baseline conditions for the venerable Suzuki-Miyaura carbon–carbon coupling reaction.
Because this method sampled a broad region of chemical space and considered negative results that are rarely
tracked in conventional studies, a substantial improvement in average yield was obtained. —JSY
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