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Bona fide stochastic resonance under
nonGaussian active fluctuations†

Govind Paneru, ab Tsvi Tlusty *ab and Hyuk Kyu Pak *ab

We report on the experimental observation of stochastic resonance (SR) in a nonGaussian active bath

without any periodic modulation. A Brownian particle hopping in a nanoscale double-well potential

under the influence of nonGaussian correlated noise, with mean interval tP and correlation time tc,

shows a series of equally-spaced peaks in the residence time distribution at integral multiples of tP. The

strength of the first peak is found to be maximum when the mean residence time �td matches the

double condition, 4tc E tP E �td/2, demonstrating a new type of bona fide SR. The experimental

findings agree with a simple model that explains the emergence of SR without periodic modulation of

the double-well potential. Additionally, we show that generic SR under periodic modulation, known to

degrade in strongly correlated continuous noise, is recovered by the discrete nonGaussian kicks.

Introduction

Stochastic resonance (SR) occurs when a weak periodic signal is
enhanced in the presence of noise, and the enhancement
shows resonant behavior as the noise is tuned.1 A prototypical
setting of SR is a Brownian particle hopping in a symmetric
double-well potential under the influence of thermal noise.
When periodic forcing is added, the double-well potential is
asymmetrically tilted up and down, thereby sequentially raising
and lowering the potential barriers. It may synchronize with the
thermally-induced hopping process, as manifested by peaks in
the residence time distribution (RTD) corresponding to the
external force period. Maximum synchronization occurs when
the thermally induced hopping rate is half the period of
modulation. In this case, the first peak strength in the RTD
assumes a maximum leading to bona fide SR.9 SR is a universal
phenomenon that has been explored in diverse fields ranging
from climatology to biology.1–8 The validity of SR as a bona fide
resonance that attains maximal synchronization between per-
iodic forcing and noise-induced hopping has been extensively
discussed.9–13

Can random signals also induce bona fide resonance? –
Gammaitoni et al.1,14 demonstrated SR under a periodic signal
with random amplitudes. However, whether fully random
fluctuations, with random amplitude and random period, lead

to bona fide resonance remains an open question. Here, we
experimentally demonstrate SR of a Brownian particle in a
double-well potential under nonGaussian active fluctuations
having finite-amplitude active bursts of random amplitude that
are arriving with an average period following a Poisson dis-
tribution. A direct implication of our finding is that SR is much
more widespread than previously realized since it does not
necessitate sequential forcing.

Such active baths with nonGaussian statistics have become a
timely topic, as mounting evidence suggests they are prevalent
in living systems. In the active baths around swimming
bacteria15–22 or in the cellular milieu,23–26 diffusion is governed
by the coaction of uncorrelated thermal fluctuations of the
solvent and correlated fluctuations induced by active compo-
nents. While a common model of active baths has been the
Active Ornstein–Uhlenbeck (AOU) noise,15,27 theoretical studies
showed that this Gaussian process suppresses SR as the active
noise correlation time increases.28 This result is considered
counter-intuitive, as active noise generally enhances transport
and diffusion, calling for a more realistic active bath model.
Indeed, recent experiments provided evidence for nonGaussian
noise processes in biological and artificial systems of active
swimmers,17,22,29–31 as well as in living cells32,33 and glassy
systems.34 On the other hand, a recent theoretical study
proposed that the non-Gaussian diffusion observed in a bacter-
ial suspension can be explained in terms of a coloured Poisson
process.35

Here, we investigate the dynamics of a Brownian particle in a
double-well potential under the influence of the exponentially
correlated nonGaussian active noise. The nonGaussian active
noise generates random-amplitude active bursts, decaying
exponentially with correlation time tc and separated by discrete
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intervals with an average time tP following Poisson distribution
(Fig. 1a). By adjusting the noise parameters, the active noise
can switch between Gaussian and nonGaussian correlated
noise, mimicking active baths with these statistics. We find
that the particle position distribution exhibits two symmetric
peaks that generally follow a Gaussian distribution. However,
when tc o tP and the active noise is stronger than the thermal
noise, the peaks develop exponential side-tails, a signature of a
nonGaussian active bath.17,30,36 In this nonGaussian regime of
the active noise, the RTD of the particle exhibits a series of
exponentially decaying peaks at integral multiples of tP The
strength of the first peak can be maximized by changing either
tc or tP according to the resonance condition 4tc E tP E �td/2,
where �td is the average residence time. This observation of the
first peak maximum around the resonance value establishes
the existence of bona fide SR in active bath without any periodic
modulation, as the observed dynamics is driven solely by the
nonGaussian active noise.

We further examine how the nonGaussian active noise
affects the generic form of SR, i.e., under a periodic force,
which tilts the double-well potential up and down sequentially.
We observe the suppression of the generic SR in the Gaussian
regime of the active noise, a first experimental demonstration
of the predicted degradation of SR in the presence of
coloured noise.28 Strikingly, the SR recovers in the nonGaus-
sian regime, tP 4 tc. Overall, our results propose the correlated-
nonGaussian noise as a strong generator of SR, with direct
implications on stochastic processes in living systems.

Results
Active bath model

We consider the one-dimensional motion of a Brownian
particle in a symmetric double-well potential, VDW(x) =
Eb[�2(x/xm)2+ (x/xm)4] where x is the particle position, �xm

are the potential minima, and Eb is the barrier height, in an
active bath of temperature T.

The motion of the particle is described by the overdamped
Langevin equation:

g
dx

dt
¼ �@VDWðxÞ

@x
þ xth þ xact : (1)

Here, the thermal noise xth is Gaussian white noise with zero
mean and no memory, hxth(t)xth(t0)i = 2g2Dd(t � t0), where g is
the dissipation coefficient in the solvent and D = kBT/g is the
thermal diffusivity of the particle. Without active noise, xact = 0,
the particle is in thermal equilibrium, and the average barrier
crossing time is the Kramers time, tK = trexp(Eb/kBT), where tr is
the relaxation time within a single potential well.1,37 The
various time scales used in this study are defined in Table 1.
The active noise xact is generated from the discrete white noise
xPN, where each burst of random strength arrives at a discrete
interval following Poisson distribution, using the active Orn-
stein–Uhlenbeck process (see ESI† for noise generation pro-
cess):

tcdxactðtÞ=dt ¼ �xactðtÞ þ
ffiffiffi
2
p

xPNðtÞ: (2)

Eqn (2) generates exponentially correlated nonGaussian active
noise with a zero mean hxacti = 0, and autocorrelation

hxact(t)xact(t0)i = fact
2exp(�|t � t0|/tc) (3)

Here, fact �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð1þ tP=DtÞ

p
characterizes the strength of

active noise (the standard deviation of the active noise distribu-
tion), where C is the variance of the Gaussian white noise from
which the discrete white noise xPN is generated (eqn (S9) in

Fig. 1 (a) Illustration of SR in the presence of nonGaussian active noise without periodic modulation. The positive active burst xact(t) (blue curve) supplies
energy to the particle in the double-well potential during a time tc, effectively lowering the barrier height by lifting the left well. Subsequently, the
strength of the active burst is significantly reduced during a time tP–tc, the left potential well is lowered back to its original position, and the thermal
condition is recovered. (b) PDF of the particle position in the double-well potential, with Eb/kBT = 3 and xm = 50 nm, in the presence of active noise of
fixed strength fact E 0.5 pN and noise arrival interval tP E 28 ms, for correlation times tc E 21 ms (olive), 7 ms (black), 0.28 ms (blue, numerical result
obtained by solving eqn (1)). The gray curve is the theoretical PDF of the particle in a thermal bath alone, P(x) B exp(�VDW(x)/kBT).

Table 1 List of timescales used in the study

Dt Sampling time
tK Kramers time in a thermal bath
tr Thermal relaxation time
tc Active noise correlation time
tP Average active noise arrival time
td Residence time
tmod Modulation time for periodic modulation
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ESI†), tP is the average noise arrival time, and Dt is the noise
input interval (the sampling time). Typical noise arrival time
distributions are shown in Fig. S2 in ESI.† Note that although
each kick arrives at an average interval tP, we want to stress that
the strength and direction of the kicks are purely random and
follow white Gaussian noise (Fig. S1, ESI†). Thus, the active
noise acts on the system randomly.

The significance of our noise generation approach is that all
three parameters, C, tc, and tP, can be independently varied. In
particular, xact becomes AOU noise in the limit tP = 0, and white
Gaussian noise when both tc and tP vanish (Fig. S1, ESI†). The
power spectral density (PSD) of the nonGaussian active noise
matches with the AOU noise of the same strength and correla-
tion time (Fig. S1(f), ESI†). Thus, the nonGaussian active noise
is similar to the AOU noise with reduced strength
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð1þ tP=DtÞ

p
. A tracer particle in the presence of the non-

Gaussian active noise shows enhanced Gaussian or nonGaus-
sian diffusion depending on the active noise parameters (see
eqn (S12) and Fig. S5 in ESI†). The active noise thus mimics the
real active baths such as the bath of swimming cells17,35 and
cellular environments.32,33,38

Generating a double-well potential

The double-well potential and the active noise in the experi-
ment were generated simultaneously using the active optical
feedback trap (AOFT) technique, an upgraded version of the
optical feedback trap technique.39,40 The experimental
setup is similar to the one used in41–45 and also expounded
in Fig. S3 in ESI.† To this end, a 2.0 mm diameter polystyrene
particle suspended in deionized water at room temperature
T = 296 � 1 K was trapped in a harmonic potential, Vop(x, t) =
(k/2)(x � xc(t))2, generated by the trapping laser, where xc is the
trap’s center and k is its stiffness. The quadrant photodiode
(QPD) measures the particle position (x with respect to the trap
center xc) with high precision (B1 nm). The signal from the
QPD is acquired by a field-programmable gate array (FPGA)
card using a custom-written LabVIEW FPGA program at
Dt E 70 ms sampling time. The FPGA computes the feedback
force, fDW = �qxVDW(x), required for generating the double-well
potential. The active noise is imposed by adding numerically-
generated nonGaussian active noise, xact(t) � �ky(t), to the
feedback force fDW. Eqn (S1)–(S3) and Fig. S1 in the ESI† explain
how y(t) is generated. Each value of y(t) – with Gaussian-
distributed random amplitude y of zero mean zero, hyi = 0,
and variance s2 – is randomly drawn from a Poisson distribu-
tion with an average interval tP, and decays exponentially with
correlation time tc (see Fig. 1a and Fig. S1b in the ESI†). The
variance of the active burst in eqn (2) is then C/(1 + tP/Dt) = k2s2/
(1 +tP/Dt). The resultant force fDW + xact is applied to the particle
in the form of an optical feedback force by shifting the trap
center instantaneously, using an acoustic optical deflector
(AOD), to xc(t) = (1 + 4Eb/xm

2k)x(t) � (4Eb/xm
4k)x3(t) + y(t). On

repeating this protocol many times, the particle feels effective
double-well potential and active noise. The AOFT technique
thus generates the virtual double-well potential and active noise

simultaneously, consequently the particle moves in the double-
well potential mimicking real active baths. The maximum
displacement of the particle that the QPD can measure such
that the stiffness of the optical trap remains constant is
B0.6 mm. This limits the maximum strength of the active noise
to fact B 0.5 pN. In this study, we set Eb = 3kBT and xm = 50 nm.
In addition, the trap stiffness of the optical trap
k E 10 pN mm�1 was obtained experimentally from the equi-
partition theorem.45 The relaxation time of the particle in the
optical trap is then given by top = g/k E 1.73 ms.

NonGaussian distribution of particle position

Fig. 1b shows the PDFs of the particle position in the symmetric
double-well potential, in the presence of nonGaussian active
noise of fixed strength fact E 0.5 pN (comparable to the typical
strength of the active fluctuations in living cells26,32,46), and
noise arrival time tP E 28 ms (4tr E 4 ms) obtained by
analysis of the particle trajectories (see Fig. S4 a to c in ESI†).
For tc o tr, the PDF exhibits two symmetric peaks centered
around �xm. The central region of the PDF is described by a
Boltzmann distribution P(x) B exp(�U(x)/kBT), where U(x) is
the effective double-well potential (see Fig. S4d in the ESI†),
albeit with a reduced effective barrier height. However, when
tc 4 tr both the effective barrier height and well separation are
larger than their values in a thermalized system (Fig S4e and f,
ESI†). Remarkably, each peak in Fig. 1b is always Gaussian near
its center, but the outer tails are often nonGaussian. We found
that the PDFs become nonGaussian only when tc t tP and
fact \ fth where fth = (8kBT Eb/xm

2)1/2 E 0.4 pN is the thermal
force strength at the potential wells. This condition for obtain-
ing a nonGaussian PDF is similar for diffusion in a simple
harmonic potential (Fig. S5 in the ESI†).

SR without periodic modulation

To analyze the hopping dynamics of the particle in the sym-
metric double-well potential, we measured the probability
distribution P(td) of the residence time td, i.e., the time the
particle remains within the potential well before hopping into
the other potential well. Note that, for the particle hopping in
the symmetric double-well potential in the thermal bath alone,
i.e., in the absence of external periodic force or active noise, the
average residence time �td is equal to the Kramers time tK. The
residence time td is determined based on the particle trajec-
tories (as in;1,9,14 see Fig. S7a–c in the ESI† for typical particle
trajectories and active noise trajectories). In the absence of
active noise, the RTD decays exponentially, with a mean resi-
dence time �td equal to tK.1,37,47 In the presence of active noise,
in the regime tP o tr, the RTD remains exponential (Fig. 2a),
with �td o tK.

However, for tP \ tr and fact \ fth, the RTD displays
a series of peaks, each centered at the integral multiple of tP,
i.e., (td)n = ntP (Fig. 2b). The height of each peak decreases
exponentially with its order n (Fig. S6, ESI†). In addition, the
height of the first peak increases with the correlation time tc

and assumes a maximum at a finite value of tc. For further
quantification, we measured the strength of the first peak (area
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under the first peak) P1 ¼
Ð ðtdÞ1þtP=4
ðtdÞ1�tP=4

PðtdÞdtd9,48 (Fig. 2b inset

and Fig. S7d, ESI†) and found that it attains a maximum at
tc E tP/4. The global maximum of P1 is found when tr o tc t
5tr (Fig. S7d inset, ESI†).

Furthermore, we measured the RTD of the particle as a

function of tP while maintaining the active burst strength
ffiffiffiffi
C
p

and the correlation time tc constant. Similar to the above, a
series of exponentially-decaying peaks centered at ntP are
evident for tP \ tr. For a given tc, the strength of the first peak

is maximal when t
P
E �td/2 (Fig. 2c). Note that for a fixed

ffiffiffiffi
C
p

, a
change in the noise arrival interval changes the strength of

active noise fact �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð1þ tP=DtÞ

p
. Thus, we found that max-

imal synchronization can be achieved between the particle
residence time and the active noise arrival interval by appro-
priately selecting the active noise parameters (tc, tP, or fact). The
pronounced maximum of the first peak strength demonstrates
bona fide SR.1,14,49 Importantly, the SR observed here is gener-
ated solely by the nonGaussian active noise, without any
periodic modulation of the double-well potential. For tP c

tK, the RTD again shows exponentially-decaying behavior
because the kicking events are rare, and the mean residence
time �td saturates to the Kramers time tK, as shown in Fig. 2d.

Fig. 2d also shows the barrier crossing is enhanced or
diminished depending on the active noise time scales (tc and

tP). We found that in presence of active noise �td is generally less
than tK. However, for strongly correlated active bath with tP \

tc c tr (see violet curve in Fig. 2d), �td 4 tK, leading to the
slowdown of the barrier crossing. Also, a recent study on the
particle motion in the double-well potential in the presence of
viscoelastic bath demonstrated the barrier-crossing enhance-
ment is controlled by the time scales associated with the
viscoelastic bath.50

The observed barrier crossing enhancement and particle
synchronization in the presence of nonGaussian active noise
can be intuitively explained: the active noise randomly injects
energy into the system, with a mean interval tP, and each pulse
decays with a correlation time tc. For tc and tP o tr, several
bursts kick the particle during its thermal relaxation time, thus
increasing its effective temperature and enhancing the barrier
crossing rate. In Fig. S7 (ESI†) we analyze the particle trajectory
under the influence of the active noise of fixed fact E 0.5 pN and
tP/tr c 1 with different tc. For tP/tr c 1 and tc/tr { 1 (Fig. S7a,
ESI†), each active burst decays faster than tr. The active bursts
drive the particle through its short correlation time tc { tr and
cease to act on the particle during the time interval tP–tc,
allowing to recover the thermal condition (Fig. 1a). Conse-
quently, the barrier crossing is less synchronized with the active
noise. On the other hand, for tP/tr c 1 and tP/tc o 1 (Fig. S7c,
ESI†), many correlated active bursts arrive during the

Fig. 2 (a) Experimentally measured residence time distribution (RTD) for fact E 0.5 pN, tc E 0.7 ms, and tP E 0. Here, the average residence time
�td E 12.6 � 0.1 ms is much less than the Kramers time, tK E 79 ms (dashed vertical line). (b) Experimentally measured particle’s RTD, where the residence
time is normalized by noise arrival interval td/tP, for the same fact and tP as in Fig. 1b with tc E 21 ms (olive), 7 ms (black), and 3.5 ms (purple). Inset: Plot of
the strength of the first peak as a function of tc/tP for experimental data in the main panel (black squares) and for the data obtained by solving eqn (1))
numerically. The dashed vertical line denotes tc/tP = 0.25. (c) (Numerical result obtained by solving eqn (1)) the strength of the first peak in the RTD for the
particle as a function of tP/�td for fixed

ffiffiffiffi
C
p
� 20pN and tc E 1.25 ms (orange), 7.5 ms (olive), and 20 ms (violet). The gray open circle is the plot of the

second peak strength for tc E 7.5 ms. The vertical dashed line corresponds to tP/�td = 0.5. (d) Normalized average residence time as a function of tP for
the like-coloured data in (c).
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correlation time tc c tr and the active noise becomes AOU
noise. In the presence of such AOU noise with long correlation
time, the particle is driven in the same direction for tc c tr,
thereby slowing down the barrier crossing.

Maximum synchronization between the barrier crossing and
the active noise is observed when tP/tr c 1 and tr o tc o tP,
(Fig. S7b, ESI†). Here, the strength of individual kick is large
enough for driving the particle to cross the barrier. Moreover,
each active burst decays fully before another burst arrives (the
active bursts are not correlated with each other). Thus, a
particle, for example, in the left well (see Fig. 1a) may diffuse
to the right well when acted by the positive active burst with
correlation duration tc 4 tr and relaxes in thermal equilibrium
during the time tP–tc inside the right well. If the particle does
not cross the barrier, it waits for the duration tP–tc during
which the particle relaxes in thermal equilibrium inside the left
well. Thus, nonGaussian noise randomly modulates the barrier
height and potential-well separation, with an average modula-
tion period tP (Fig. 1a). The ideal timing for the particle to
cross the barrier is when its height is the lowest. This
optimality condition can be achieved by tuning either tP, which
controls the noise arrival interval and the noise strength

fact �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ð1þ tP=DtÞ

p
, or tc, which controls the decay time of

the active bursts and the thermal relaxation duration tP–tc of
the particle. Thus, we see that the resonance condition, tr o
tc t 5tr and 4tc E tP E �td/2, can be achieved by varying these
noise parameters.

Recovery of generic SR by nonGaussian active noise

To gain further insight, we also studied the generic form of SR
experimentally with periodic modulation of the double-well
potential in the presence of nonGaussian active noise by using
the AOFT technique. To this end, the double-well potential is
periodically tilted with an amplitude A and a period tmod,
V(x, t) = VDW(x) � A x sin(2pt/tmod). In the absence of active
noise, and for modulation times shorter than the Kramers time,

tmod o tK, the RTD shows a series of peaks centered at odd
multiples of tmod/2 (black curve in Fig. 3a). On increasing the
modulation time toward the resonant condition tmod E 2tK, the
barrier crossing rate of the particle becomes synchronized with
the modulation period, and a single peak centered at tmod/2 is
observed (blue curve in Fig. 3a). The PDF of the particle under
the periodic modulation with tmod E 2tK coincides with the
thermal PDF (gray curve in Fig. 1b). The SR phenomenon under
periodic forcing can also be identified through the power
spectrum density (PSD) of the particle fluctuations.1 A sharp
peak is observed at the modulation frequency and a weak peak
at the third harmonic (Fig. 3a inset). Thus, our optical feedback
trap method can precisely measure SR in a thermal bath under
periodic forcing. Compared to the previous experimental
works,47,49 which studied the SR of Brownian particles in
double-well potentials with inter-well separation greater than
1 mm, we demonstrated here SR in a nanoscale double-well
potential well separated by 2xm = 100 nm.

In the presence of active noise at tP E 0, corresponding to
the Gaussian regime of the active bath, we observed suppres-
sion of the SR: if the double-well potential is modulated
sinusoidally with a period tmod E 2tK, the intensities of the
resonant peaks in the RTD as well as PSD decrease as the
correlation time tc increases (Fig. 3b and inset). The peaks
disappear completely when tc c tr, and the active noise is
stronger than the thermal noise. Our experimental observation
agrees with the theoretical prediction in ref. 28. However, in the
nonGaussian regime of the active bath, the resonant peak
reappears at finite tP, as shown in Fig. 3c. Likewise, a sharp
peak at the modulation frequency is observed in the PSD
(Fig. 3c inset). The resonant peak height increases with tP

and recovers back to the purely thermal level when tP c tK,
even when the active noise is stronger than the thermal noise,
fact \ fth (Fig. S8 in the ESI†). Thus, we recovered SR in the
nonGaussian active bath under periodic forcing.

SR recovery in the presence of nonGaussian active noise at
finite non-zero intervals, tP 4 0, can be explained as follows:

Fig. 3 Experimentally measured residence time distributions (RTDs) of the particle under the periodic modulation of the double-well potential. (a) In the
absence of active noise with the modulation amplitude A E 0.3 pN and period tmod E 0.38tK (black) and 2tK (blue). Inset: Power spectral density of the
particle under the resonant condition tmod E 2tK. (b) RTD under the resonant condition, tmod = 2tK and A E 0.3 pN, in the presence of Gaussian noise of
strength

ffiffiffiffi
C
p
� 0:5 pN and correlation time tc E 0.35 ms (olive) and 35 ms (black). Inset: Corresponding power spectral densities. (c) RTD under the

resonant condition, tmod = 2tK and A E 0.3 pN, in the presence of nonGaussian noise with fixed
ffiffiffiffi
C
p
� 1pN and tc E 35 ms and tP E 3.5 ms (orange),

35 ms (gray), and 350 ms (purple). Inset: Corresponding power spectral densities.
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for tP E 0 (the Gaussian regime), the active noise supplies
energy to the particle continuously and in a random direction
for an average time tc. Therefore, this noise might counteract
the barrier crossing process, with its typical timescale tK and
the tilting with its period tmod, thereby suppressing the reso-
nant behavior for long correlations tc (tc c tr). However, when
tP 4 tc c tr (the nonGaussian regime), the noise strength
decreases as fact B (1 + tP/Dt)�1/2. Furthermore, each active
pulse completely decays before the arrival of another one;
consequently, the particle is free of the active noise during
the time interval tP–tc (as in Fig. 1a) and becomes equilibrated
by dissipating energy into the thermal bath. Thus, the thermal
SR condition is recovered. This is evident from our observation
that the central region of the effective potential—for which the
PSD shows a sharp resonant peak (Fig. S8, ESI†)—fits well to a
thermally-activated potential (Fig. S8 inset, ESI†).

Conclusions

To sum, we studied the dynamics of a colloidal particle
in a symmetric double-well potential in the presence of
exponentially-correlated nonGaussian active noise. The RTD
exhibited a series of peaks at integral multiples of the noise
arrival interval. The strength of the first peak was maximized by
either changing the correlation time or the noise arrival inter-
val, demonstrating SR in the Brownian system without symme-
try breaking. The generic form of SR with periodic modulation
of the double-well potential, which deteriorates with Gaussian
correlated noise, was recovered with nonGaussian correlated
noise having a large noise arrival interval. The findings of this
study indicate that nonGaussian active fluctuations may lead to
the synchronization of various biomolecular processes, such as
protein folding, enzymatic reactions, and signal transduction
inside living cells.
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32 É. Fodor, M. Guo, N. S. Gov, P. Visco, D. A. Weitz and F. van
Wijland, EPL, 2015, 110, 48005.

33 K. Shin, S. Song, Y. H. Song, S. Hahn, J.-H. Kim, G. Lee,
I.-C. Jeong, J. Sung and K. T. Lee, J. Phys. Chem. Lett., 2019,
10, 3071–3079.

34 P. Chaudhuri, L. Berthier and W. Kob, Phys. Rev. Lett., 2007,
99, 060604.

35 K. Kanazawa, T. G. Sano, A. Cairoli and A. Baule, Nature,
2020, 579, 364–367.

36 B. Wang, J. Kuo, S. C. Bae and S. Granick, Nat. Mater., 2012,
11, 481.

37 H. A. Kramers, Physica, 1940, 7, 284–304.
38 P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz,

V. Viasnoff, J. P. Butler and J. J. Fredberg, Nat. Mater., 2005,
4, 557–561.

39 J. A. C. Albay, G. Paneru, H. K. Pak and Y. Jun, Opt. Express,
2018, 26, 29906–29915.

40 A. Kumar and J. Bechhoefer, Appl. Phys. Lett., 2018,
113, 183702.

41 G. Paneru, D. Y. Lee, T. Tlusty and H. K. Pak, Phys. Rev. Lett.,
2018, 120, 020601.

42 G. Paneru, D. Y. Lee, J.-M. Park, J. T. Park, J. D. Noh and
H. K. Pak, Phys. Rev. E, 2018, 98, 052119.

43 D. Y. Lee, J. Um, G. Paneru and H. K. Pak, Sci. Rep., 2018,
8, 12121.

44 G. Paneru, S. Dutta, T. Sagawa, T. Tlusty and H. K. Pak, Nat.
Commun., 2020, 11, 1012.

45 G. Paneru and H. K. Pak, Adv. Phys.: X, 2020, 5, 1823880.
46 R. Rodrı́guez-Garcı́a, I. López-Montero, M. Mell, G. Egea,
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